33 research outputs found

    Implementation of a flexible and modular multiphase framework for the analysis of surface-tension-driven flows based on a LS-VOF approach

    Get PDF
    The mathematical modelling and numerical simulation of multi-phase flows are both a demanding and highly complex exercise. In typical problems with industrial relevance, the fluids are often in non-isothermal conditions and interfacial phenomena are a relevant part of the problem. A number of effects due to the presence of temperature differences must be adequately taken into account to make the results of numerical simulations consistent and realistic. Moreover, in general, gradients of surface tension at the interface separating two liquids are a source of numerical issues that can delay (and even prevent completely in some circumstances) the convergence of the solution algorithm. Here, we propose a fundamental and concerted approach for the simulation of the typical dynamics resulting from the presence of a dispersed phase in an external matrix in nonisothermal conditions based on the modular computer-aided design, modelling, and simulations capabilities of the OpenFOAM environment. The resulting framework is tested against the migration of a droplet induced by thermocapillary effects in the absence of gravity. The simulations are fully three-dimensional and based on an adaptive mesh refinement (AMR) strategy. We describe in detail the countermeasures taken to circumvent the problematic issues associated with the simulation of this kind of flows

    Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.

    Get PDF
    BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery

    Inhibition of <i>Acinetobacter baumannii</i> Biofilm Formation Using Different Treatments of Silica Nanoparticles

    No full text
    There exists a multitude of pathogens that pose a threat to human and public healthcare, collectively referred to as ESKAPE pathogens. These pathogens are capable of producing biofilm, which proves to be quite resistant to elimination. Strains of A. baumannii, identified by the “A” in the acronym ESKAPE, exhibit significant resistance to amoxicillin in vivo due to their ability to form biofilm. This study aims to inhibit bacterial biofilm formation, evaluate novel silica nanoparticles’ effectiveness in inhibiting biofilm, and compare their effectiveness. Amoxicillin was utilized as a positive control, with a concentration exceeding twice that when combined with silica NPs. Treatments included pure silica NPs, silica NPs modified with copper oxide (CuO.SiO2), sodium hydroxide (NaOH.SiO2), and phosphoric acid (H3PO4.SiO2). The characterization of NPs was conducted using scanning electron microscopy (SEM), while safety testing against normal fibroblast cells was employed by MTT assay. The microtiter plate biofilm formation assay was utilized to construct biofilm, with evaluations conducted using three broth media types: brain heart infusion (BHI) with 2% glucose and 2% sucrose, Loria broth (LB) with and without glucose and sucrose, and Dulbecco’s modified eagle medium/nutrient (DMEN/M). Concentrations ranging from 1.0 mg/mL to 0.06 ”g/mL were tested using a microdilution assay. Results from SEM showed that pure silica NPs were mesoporous, but in the amorphous shape of the CuO and NaOH treatments, these pores were disrupted, while H3PO4 was composed of sheets. Silica NPs were able to target Acinetobacter biofilms without harming normal cells, with viability rates ranging from 61–73%. The best biofilm formation was achieved using a BHI medium with sugar supplementation, with an absorbance value of 0.35. Biofilms treated with 5.0 mg/mL of amoxicillin as a positive control alongside 1.0 mg/mL of each of the four silica treatments in isolation, resulting in the inhibition of absorbance values of 0.04, 0.13, 0.07, 0.09, and 0.08, for SiO2, CuO.SiO2, NaOH.SiO2 and H3PO4.SiO2, respectively. When amoxicillin was combined, inhibition increased from 0.3 to 0.04; NaOH with amoxicillin resulted in the lowest minimum biofilm inhibitory concentration (MBIC), 0.25 ”g/mL, compared to all treatments and amoxicillin, whereas pure silica and composite had the highest MBIC, even when combined with amoxicillin, compared to all treatments, but performed better than that of the amoxicillin alone which gave the MBIC at 625 ”g/mL. The absorbance values of MBIC of each treatment showed no significant differences in relation to amoxicillin absorbance value and relation to each other. Our study showed that smaller amoxicillin doses combined with the novel silica nanoparticles may reduce toxic side effects and inhibit biofilm formation, making them viable alternatives to high-concentration dosages. Further investigation is needed to evaluate in vivo activity
    corecore