3 research outputs found

    The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Get PDF
    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process

    The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    No full text
    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process

    Ergosterol and polyphenol contents as rapid indicators of orchardgrass silage safety

    Get PDF
    The ergosterol (ERG) has been proposed as a potential indicator of fungal contamination, along with polyphenol content analysis to predict silage safety. Despite efforts in controlling fungal growth in silage, mycotoxin co-contamination represents a possible risk for animal and human health. Modern analytical techniques determine a multitude of fungal metabolites contaminating feed. Nonetheless, these methods require sometimes arduous sample pre-treatment, long separation times, and expensive standard compounds to identified contaminants. Thus, the goal of this study was to suggest a rapid analysis of ERG and polyphenol contents to assess silage hygienic quality in ten orchardgrass varieties ensiled without and with biological and chemical additives. The determination of ERG on samples was performed by high-performance liquid chromatography using UV detection and UV/Vis spectrophotometry to determine the polyphenol content. Statistically significant differences (P < 0.05) between varieties, years and silage additives were found. Bepro was the unique variety that did not present ERG in the first cut in 2012. ERG content increased in the first cut in 2013 using biological additives as well as ERG and polyphenol contents in the first cut in 2013 using chemical additives compared with untreated silage. In addition, biological and chemical additives used in this study did not satisfactorily reduce the content of ERG and polyphenols in silage grass. Consequently, our results provide fast information about the progressive fungal contamination of grass silage. To our knowledge, it is the first time that the presence of ERG and polyphenols is determined in ten different orchardgrass varieties treated without and with additives. In general, ERG and polyphenol contents showed to be good indicators of orchardgrass silage safety
    corecore