45 research outputs found

    Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach

    Get PDF
    This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations

    Loss of Sex and Age Driven Differences in the Gut Microbiome Characterize Arthritis-Susceptible *0401 Mice but Not Arthritis-Resistant *0402 Mice

    Get PDF
    <div><h3>Background</h3><p>HLA-DRB1*0401 is associated with susceptibility, while HLA-DRB1*0402 is associated with resistance to developing rheumatoid arthritis (RA) and collagen-induced arthritis in humans and transgenic mice respectively. The influence of gut-joint axis has been suggested in RA, though not yet proven.</p> <h3>Methodology/Principal Findings</h3><p>We have used HLA transgenic mice carrying arthritis susceptible and -resistant HLA-DR genes to explore if genetic factors and their interaction with gut flora gut can be used to predict susceptibility to develop arthritis. Pyrosequencing of the 16S rRNA gene from the fecal microbiomes of DRB1*0401 and DRB1*0402 transgenic mice revealed that the guts of *0401 mice is dominated by a Clostridium-like bacterium, whereas the guts of *0402 mice are enriched for members of the <em>Porphyromonadaceae</em> family and <em>Bifidobacteria</em>. DRB1*0402 mice harbor a dynamic sex and age-influenced gut microbiome while DRB1*0401 mice did not show age and sex differences in gut microbiome even though they had altered gut permeability. Cytokine transcripts, measured by rtPCR, in jejuna showed differential TH17 regulatory network gene transcripts in *0401 and *0402 mice.</p> <h3>Conclusions/Significance</h3><p>We have demonstrated for the first time that HLA genes in association with the gut microbiome may determine the immune environment and that the gut microbiome might be a potential biomarker as well as contributor for susceptibility to arthritis. Identification of pathogenic commensal bacteria would provide new understanding of disease pathogenesis, thereby leading to novel approaches for therapy.</p> </div

    High-order computation of burning propellant surface and simulation of fluid flow in solid rocket chamber

    No full text
    International audienceIn this paper, we present a numerical approach for predicting fluid flows in solid rocket motor (SRM) chambers. We use a novel high-order technique to track the burning grain surface. Spectral convergence toward the exact burning surface is achieved thanks to Fourier differentiation. In addition, we make use of a body-fitted mesh deforming with the burning surface and present a method to avoid manual remeshing. We describe several methods to deform the volume mesh and to keep good mesh element quality during the computation. We then couple the surface and volume approaches. The resulting coupled method is able to handle the formation of geometric singularities on the burning surface while keeping constant surface and volume mesh topology. This geometrical approach is integrated into a complex code for compressible, multi-species, turbulent flow simulations. Applications to the simulation of the internal flow in realistic solid rocket motors with complex grain geometry are then presented
    corecore