12 research outputs found

    An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities

    Get PDF
    There is a significant need for a computer-aided modeling, effective information analysis and ontology knowledge base models to support both special needs children and care providers. As this research work correlated to the symmetry scope, it proposes an innovative generic smart knowledge-based “School Care Coordination System” (SCCS), which is established on a novel holistic six-layered data management model. The development of the Smart-SCCS adopts a methodology of ontology engineering to transform the given theoretical unstructured special educational needs and disabilities (SEND) code of practice into a comprehensive knowledge representation and reasoning system. The intended purpose is to deliver a system that can coordinate and bring together education, health and social care services into a single application to meet the needs of children and young people (CYP) with SEND. Moreover, it enables coordination, integration and monitoring of education, health and social care activities between different actors (formal, informal and CYP in the education sector) involved in the school care process network to provide personalized care interventions based on a predefined care plan. The developed ontology knowledge-based model has been proven efficient and solved the enormous difficulties faced by schools and local authorities on a daily basis. It enabled the coordination of care and integration of information for CYP from different departments in health, social care and education. The developed model has received significant attention with great feedback from all the schools and the local authorities involved, showing its efficiency and robustness

    A reinforcement-learning-based model for resilient load balancing in Hyperledger Fabric

    Get PDF
    Blockchain with its numerous advantages is often considered a foundational technology with the potential to revolutionize a wide range of application domains, including enterprise applications. These enterprise applications must meet several important criteria, including scalability, performance, and privacy. Enterprise blockchain applications are frequently constructed on private blockchain platforms to satisfy these criteria. Hyperledger Fabric is one of the most popular platforms within this domain. In any privacy blockchain system, including Fabric, every organisation needs to utilise a peer node (or peer nodes) to connect to the blockchain platform. Due to the ever-increasing size of blockchain and the need to support a large user base, the monitoring and the management of different resources of such peer nodes can be crucial for a successful deployment of such blockchain platforms. Unfortunately, little attention has been paid to this issue. In this work, we propose the first-ever solution to this significant problem by proposing an intelligent control system based on reinforcement learning for distributing the resources of Hyperledger Fabric. We present the architecture, discuss the protocol flows, outline the data collection methods, analyse the results and consider the potential applications of the proposed approach

    Towards Developing Mid-Infrared Photonics Using Mxenes

    Full text link
    Recent research and development in the mid-infrared (IR) wavelength range (2-20 um) for a variety of applications, such as trace gas monitoring, thermal imaging, and free space communications have shown tremendous and fascinating progress. MXenes, which mainly refer to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have drawn a lot of interest since their first investigation in 2011. MXenes project enormous potential for use in optoelectronics, photonics, catalysis, and energy harvesting fields proven by extensive experimental and theoretical studies over a decade. MXenes offers a novel 2D nano platform for cutting-edge optoelectronics devices due to their interesting mechanical, optical, and electrical capabilities, along with their elemental and chemical composition. We here discuss the key developments of MXene emphasizing the evolution of material synthesis methods over time and the resulting device applications. Photonic and optoelectronic device design and fabrication for mid-IR photonics are demonstrated by integrating MXene materials with various electrical and photonic platforms. Here, we show the potential of using Mxene in photonics for mid-IR applications and a pathway toward achieving next-generation devices for various applications.Comment: 50 Pages, 21 figure

    Stochastic Robustness of Delayed Discrete Noises for Delay Differential Equations

    No full text
    Stochastic robustness of discrete noises has already been proposed and studied in the previous work. Nevertheless, the significant phenomenon of delays is left in the basket both in the deterministic and the stochastic parts of the considered equation by the existing work. Stimulated by the above, this paper is devoted to studying the stochastic robustness issue of delayed discrete noises for delay differential equations, including the issues of robust stability and robust boundedness

    Developing Trusted IoT Healthcare Information-Based AI and Blockchain

    No full text
    The Internet of Things (IoT) has grown more pervasive in recent years. It makes it possible to describe the physical world in detail and interact with it in several different ways. Consequently, IoT has the potential to be involved in many different applications, including healthcare, supply chain, logistics, and the automotive sector. IoT-based smart healthcare systems have significantly increased the value of organizations that rely heavily on IoT infrastructures and solutions. In fact, with the recent COVID-19 pandemic, IoT played an important role in combating diseases. However, IoT devices are tiny, with limited capabilities. Therefore, IoT systems lack encryption, insufficient privacy protection, and subject to many attacks. Accordingly, IoT healthcare systems are extremely vulnerable to several security flaws that might result in more accurate, quick, and precise diagnoses. On the other hand, blockchain technology has been proven to be effective in many critical applications. Blockchain technology combined with IoT can greatly improve the healthcare industry’s efficiency, security, and transparency while opening new commercial choices. This paper is an extension of the current effort in the IoT smart healthcare systems. It has three main contributions, as follows: (1) it proposes a smart unsupervised medical clinic without medical staff interventions. It tries to provide safe and fast services confronting the pandemic without exposing medical staff to danger. (2) It proposes a deep learning algorithm for COVID-19 detection-based X-ray images; it utilizes the transfer learning (ResNet152) model. (3) The paper also presents a novel blockchain-based pharmaceutical system. The proposed algorithms and systems have proven to be effective and secure enough to be used in the healthcare environment

    AutoRet: A Self-Supervised Spatial Recurrent Network for Content-Based Image Retrieval

    No full text
    Image retrieval techniques are becoming famous due to the vast availability of multimedia data. The present image retrieval system performs excellently on labeled data. However, often, data labeling becomes costly and sometimes impossible. Therefore, self-supervised and unsupervised learning strategies are currently becoming illustrious. Most of the self/unsupervised strategies are sensitive to the number of classes and can not mix labeled data on availability. In this paper, we introduce AutoRet, a deep convolutional neural network (DCNN) based self-supervised image retrieval system. The system is trained on pairwise constraints. Therefore, it can work in self-supervision and can also be trained on a partially labeled dataset. The overall strategy includes a DCNN that extracts embeddings from multiple patches of images. Further, the embeddings are fused for quality information used for the image retrieval process. The method is benchmarked with three different datasets. From the overall benchmark, it is evident that the proposed method works better in a self-supervised manner. In addition, the evaluation exhibits the proposed method’s performance to be highly convincing while a small portion of labeled data are mixed on availability

    Distributed Consensus Tracking Control of Chaotic Multi-Agent Supply Chain Network: A New Fault-Tolerant, Finite-Time, and Chatter-Free Approach

    No full text
    Over the last years, distributed consensus tracking control has received a lot of attention due to its benefits, such as low operational costs, high resilience, flexible scalability, and so on. However, control methods that do not consider faults in actuators and control agents are impractical in most systems. There is no research in the literature investigating the consensus tracking of supply chain networks subject to disturbances and faults in control input. Motivated by this, the current research studies the fault-tolerant, finite-time, and smooth consensus tracking problems for chaotic multi-agent supply chain networks subject to disturbances, uncertainties, and faults in actuators. The chaotic attractors of a supply chain network are shown, and its corresponding multi-agent system is presented. A new control technique is then proposed, which is suitable for distributed consensus tracking of nonlinear uncertain systems. In the proposed scheme, the effects of faults in control actuators and robustness against unknown time-varying disturbances are taken into account. The proposed technique also uses a finite-time super-twisting algorithm that avoids chattering in the system’s response and control input. Lastly, the multi-agent system is considered in the presence of disturbances and actuator faults, and the proposed scheme’s excellent performance is displayed through numerical simulations

    Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet

    No full text
    An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications

    Towards Developing Mid-Infrared Photonics Using Mxenes

    No full text
    Recent research and development in the mid-infrared (IR) wavelength range (2-20 um) for a variety of applications, such as trace gas monitoring, thermal imaging, and free space communications have shown tremendous and fascinating progress. MXenes, which mainly refer to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have drawn a lot of interest since their first investigation in 2011. MXenes project enormous potential for use in optoelectronics, photonics, catalysis, and energy harvesting fields proven by extensive experimental and theoretical studies over a decade. MXenes offers a novel 2D nano platform for cutting-edge optoelectronics devices due to their interesting mechanical, optical, and electrical capabilities, along with their elemental and chemical composition. We here discuss the key developments of MXene emphasizing the evolution of material synthesis methods over time and the resulting device applications. Photonic and optoelectronic device design and fabrication for mid-IR photonics are demonstrated by integrating MXene materials with various electrical and photonic platforms. Here, we show the potential of using Mxene in photonics for mid-IR applications and a pathway toward achieving next-generation devices for various applications
    corecore