
����������
�������

Citation: Alotaibi, R.; Alassafi, M.;

Islam, M.S.; Saha, R.; Ferdous, M.S. A

Reinforcement-Learning-Based

Model for Resilient Load Balancing

in Hyperledger Fabric. Processes 2022,

10, 2390. https://doi.org/10.3390/

pr10112390

Academic Editor: Mohammed

Alshheri

Received: 25 October 2022

Accepted: 11 November 2022

Published: 14 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Reinforcement-Learning-Based Model for Resilient Load
Balancing in Hyperledger Fabric

Reem Alotaibi 1,* , Madini Alassafi 1 , Md. Saiful Islam Bhuiyan 2, Rajan Saha Raju 2

and Md Sadek Ferdous 3,4

1 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 Department of Computer Science and Engineering, Shahjalal University of Science and Technology,

Sylhet 3114, Bangladesh
3 Department of Computer Science and Engineering, BRAC University, Dhaka 1212, Bangladesh
4 Imperial College Business School, Imperial College London, London SW7 2BX, UK
* Correspondence: ralotibi@kau.edu.sa

Abstract: Blockchain with its numerous advantages is often considered a foundational technology
with the potential to revolutionize a wide range of application domains, including enterprise ap-
plications. These enterprise applications must meet several important criteria, including scalability,
performance, and privacy. Enterprise blockchain applications are frequently constructed on private
blockchain platforms to satisfy these criteria. Hyperledger Fabric is one of the most popular platforms
within this domain. In any privacy blockchain system, including Fabric, every organisation needs to
utilise a peer node (or peer nodes) to connect to the blockchain platform. Due to the ever-increasing
size of blockchain and the need to support a large user base, the monitoring and the management of
different resources of such peer nodes can be crucial for a successful deployment of such blockchain
platforms. Unfortunately, little attention has been paid to this issue. In this work, we propose the
first-ever solution to this significant problem by proposing an intelligent control system based on
reinforcement learning for distributing the resources of Hyperledger Fabric. We present the architec-
ture, discuss the protocol flows, outline the data collection methods, analyse the results and consider
the potential applications of the proposed approach.

Keywords: blockchain; private blockchain; hyperledger fabric; load balancing; privacy; IoT; machine
learning; reinforcement learning

1. Introduction

With the ever-increasing popularity of blockchain technology, it is being utilised to
disrupt a number of application domains, i.e., healthcare systems [1], financial transaction
systems [2], educational sectors [3], and many more. Some of these applications are targeted
towards enterprise applications to solve certain business problems. These enterprise
applications must satisfy a number of requirements such as enterprise-grade scalability,
performance, and privacy. In the current state of blockchain research, private blockchain
systems are generally more favoured for such enterprise applications as these systems
perform better with respect to the highlighted requirements.

To cater to the needs of business enterprises, there have been a few initiatives to
introduce a number of private blockchain platforms. Hyperledger is one such open-source
and global collaborative effort [4]. It facilities an umbrella initiative under which different
private blockchain platforms, such as Hyperledger Fabric [5], Hyperledger Burrow [6],
Hyperledger Sawtooth [7], Hyperledger Iroha [8], and so on have been developed. Among
all these platforms, Hyperledger Fabric is one of the most matured private blockchain
platforms; hence, it is widely used in different applications and researches.

Due to the append-only nature of blockchain, the size of blockchain keeps growing,
consuming more resources as time goes by. In addition, an organisation usually needs

Processes 2022, 10, 2390. https://doi.org/10.3390/pr10112390 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10112390
https://doi.org/10.3390/pr10112390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-9354-0046
https://orcid.org/0000-0001-9919-8368
https://orcid.org/0000-0002-8361-4870
https://doi.org/10.3390/pr10112390
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10112390?type=check_update&version=1

Processes 2022, 10, 2390 2 of 19

to deploy a peer node to connect to a private blockchain platform. This peer node acts
as the gateway for the blockchain application. If a large number of users suddenly uses
this peer node simultaneously, this could lead to a situation where the peer node would
consume all its resources to serve the users. To solve these issues, there must be a load
balancing mechanism which could efficiently handle the resource utilisation of the peer
node. Unfortunately, these crucial issues are mostly overlooked while adopting private
blockchain systems. In this article, we present a machine-learning-based load balancing
model for Hyperledger Fabric, which aims to address the issues highlighted above.

Hyperledger Fabric utilises a container-based approach to deploy its blockchain net-
work. There are a number of existing works which explore the mechanisms for load-
balancing containerised applications using machine learning techniques, paving the way
to implement a machine-learning-based load balancing approach for Hyperledger Fabric.
For example, the authors in [9] incorporated three different approaches (Q learning, Dy-
namic Q learning, and Model-based) of RL (reinforcement learning) in scaling up/down
of container-based applications. Authors in [10] presented a predictive mechanism for
automatic scaling of microservice applications which utilised machine learning models
such as Linear Regression, Random Forest, and Support Vector Regressor. A deep learn-
ing approach, Bi-LSTM (Bidirectional Long Short-term Memory), was utilised in [11] to
forecast the HTTP workloads. In [12], the authors represented a survey considering the
orchestration of containers on the basis of machine learning approaches. In [13], the authors
illustrated the advantages and disadvantages of two different techniques of RL on cloud
platforms. In [14], the authors designed a framework where resources are dynamically
allocated for data centres using Docker containers.

Unfortunately, the focus of these existing works was on the load balancing of con-
tainerised applications. Understandably, these works did not consider if their approach
could be adopted for a private blockchain system such as Hyplerdger Fabric. In addition,
we have not found any research that has explored the possibility of extending the approach
presented in these works for any private blockchain system. Hence, to the best of our
knowledge, there is no existing work which has explored the possibility of adopting a load
balancing approach using a machine learning model for a private blockchain system such
as Hyperledger Fabric.

The core contributions of this article are as follows.

• We present the first-ever proposal for a machine learning model for load balancing
the resources of a leading private blockchain platform, Hyperledger Fabric.

• We discuss the architecture of the proposed method and analyse its protocol flow with
data models.

• We outline the data collection methods along with a discussion of how an optimal
model has been trained.

• Finally, we analyse the advantages of the proposed approach and envision how
the proposed methods can be integrated within the Hyperledger Fabric blockchain
platform for deploying an optimal load balancing mechanism.

The article is structured as follows. In Section 2, a brief introduction of blockchain,
Hyperledger projects and Hyperledger Fabric is presented. The proposed approach along
with its motivation, system architecture, data model and protocol flow are discussed in
Section 3. Section 4 focuses on the conducted experiments and the analysis of the result.
In Section 5, the advantages of the proposed model are analysed along with a discussion
of how the proposed approach can be deployed within Hyperledger Fabric and possible
future works. Finally, we conclude in Section 6.

2. Background

In this section, we present a brief background on blockchain (Section 2.1) and the
Hyperledger Project (Section 2.2) along with a detailed discussion on different aspects of
Hyperledger Fabric (Sections 2.3–2.6).

Processes 2022, 10, 2390 3 of 19

2.1. Blockchain

Bitcoin, the first successful decentralised digital currency in the world, introduced the
notion of blockchain [15]. A blockchain is an example of a ledger which is distributed across
a number of Peer-to-Peer (P2P) nodes [16]. This ledger consists of sequential blocks which
are chained together using cryptographic mechanisms, thus representing an ordered data
structure. Each block within a blockchain contains a number of transactions and a set of
metadata, denoted as the block header. Within the block header, a cryptographic hash refers
back to the previous block in the chain, thus forming a chain of blocks. To ensure that a
blockchain is synchronised across multiple P2P nodes, a consensus algorithm is utilised.
There are a number of distributed consensus algorithms such as Proof of Work (PoW), Proof
of Stake (PoS), Practical Byzantine Fault Tolerance (PBFT), Proof of Burn (PoB), Delegated
Proof of Stake (DPoS), and so on, each with its own advantages and disadvantages [17].
The consensus algorithm in a blockchain system also ensures the data immutability feature.

The next evolution of the Bitcoin blockchain is a new breed of blockchain system
which supports the notion of smart-contract by integrating a computing platform (e.g., a
virtual machine) with a blockchain [18]. A smart-contract is a computer program which can
be deployed and executed using the corresponding computing platform of the blockchain
system. As such, smart-contracts are tied to a blockchain system; they can be invoked
autonomously using transactions. Consequently, the executions and generated results
of such smart-contracts can become immutable and irreversible, which is regarded as
sought-after properties in many application domains. Interestingly, such smart-contract
supporting blockchain systems also offer some additional advantages: data persistence,
data provenance, distributed data control, accountability, and transparency. Examples of
these systems are: Ethereum [19], Cardano [20], Polkadot [21], and so on.

There are mainly two types of blockchains:

• Public blockchain: A public blockchain, also known as the permissionless blockchain,
facilitates the mechanism by which anyone can join the network. Any user of this
blockchain can submit transactions when they wish and participate in the block cre-
ation process. Examples of public blockchain systems are Bitcoin [22], Ethereum [19],
Cardano [20], Polkadot [21], Litecoin [23], Monero [24], and so on.

• Private blockchain: A private blockchain, also known as permissioned blockchain, on
the other hand, allows only authorised, identified and trusted entities to participate in
different activities within the system. These users generally have different types of
permissions, and blockchain establishes access control rules for each user. The ultimate
goal of such blockchain systems is to ensure the privacy of different transactions and
provide better performance and scalability in comparison to any public blockchain
systems. Examples of private blockchain systems are Hyperledger Platforms [4],
Quoram [25], and others.

2.2. Private Blockchain System: Hyperledger

Hyperledger is an open-source and global collaborative project [4] hosted by the Linux
Foundation. It consists of different leading partners from the Internet of Things, bank-
ing, finance, supply chains, manufacturing, and technology platforms. The Hyperledger
initiative provides an umbrella mechanism under which different industry partners can
collaborate to develop different types of efficient, reliable, scalable, and high-performance
private blockchain platforms. In addition, the Hyperledger initiative collaborates with
different industry partners to establish standards and guidelines for adopting blockchain
systems within different business processes. Under this umbrella initiative, there are a
number of various projects, such as Hyperledger Fabric [5], Hyperledger Burrow [6], Hy-
perledger Sawtooth [7], Hyperledger Iroha [8], and so on. Among all these platforms,
Hyperledger Fabric is one of the most matured ones which is widely used in different
applications and research. That is why we have focused on Hyperledger Fabric for this
research. However, it is to be noted that the approach presented here would be suitable for

Processes 2022, 10, 2390 4 of 19

any other private blockchain platform after minor modifications. Next, we discuss different
aspects of Hyperledger Fabric.

2.3. Hyperledger Fabric (HF)

Hyperledger Fabric (HF) is a general-purpose private blockchain platform suitable
for a number of enterprise-level use-cases. One major strength of HF is that it supports a
number of general purpose programming languages, such as Java, JavaScript, Go Lang and
others, for writing smart-contracts (known as chaincode in HF terminology). To ensure the
privacy among different organisations even within the same blockchain network, HF utilises
a unique concept called channel. A channel in HF allows users to create and manage multiple
blockchains as required by different organisations within the same network, and thus
privacy can be ensured. This can be a crucial property in many application domains where
activities between different organisations must remain private. In addition, the consensus
algorithm is modular and pluggable in HF, meaning different consensus algorithms can
be integrated as required by the application. Some of the consensus algorithms that HF
currently supports are SOLO and Kafka [26] with Simplified Byzantine Fault Tolerance
(SBFT); [27] is to be added soon.

2.4. Core Components of HF

Hyperledger Fabric consists of a number of components. In the following, we briefly
present the functionalities of its different components.

2.4.1. Nodes

There are different types of nodes in Hyperledger Fabric as discussed below:

• Certificate Authority (CA): A CA is responsible for offering an identity service, called
Membership Services Provider (MSP), to identify each entity within the network. All
other nodes and users must be registered with the MSP of the corresponding CA
before they can interact with a Fabric platform. Once registered, the public–private
key pair and the cryptographically validated digital certificate for each entity (a node
or a user) are generated and distributed [28]. Then, the entity needs to use these to
interact with other Fabric components.

• Peer: A blockchain network is constructed with a set of peer nodes where each peer is
responsible to receive a block from an orderer (discussed later) and after validating,
adds the block to the blockchain. Thus, each peer holds a copy of the full blockchain
and provides deliberate redundancy to the blockchain system.

• Endorser: An endorsing peer (or endorser in short) is responsible for validating each
transaction. Each endorser utilises a policy (see below) to check if a certain user is
authorised to submit a transaction.

• Orderer: An orderer collects different transactions from the network and combines
them into a block [29]. Then, it sends the block to all the peers belonging to a cer-
tain ledger.

2.4.2. Chaincode, Ledger, and Channel

A smart-contract is known as a chaincode in HF terminology [30]. As mentioned earlier,
such a smart-contract is a self-executing autonomous program. It essentially encodes the
rules of specific types of business functionalities as required for the blockchain platform
and its associated application to function .

The ledger represents the blockchain within the Fabric network [31]. It is a sequenced,
tamper-resistant record of all transactions occurring in the network where different transac-
tions are structured within a block.

Fabric utilises a unique concept called channel [32] to add a layer of privacy. A channel
creates a subnet within the network and initiates a separate ledger. In this way, different
ledgers can be maintained within the same blockchain network. Each peer is essentially
attached to at least one ledger via one channel. However, a peer can be part of multiple

Processes 2022, 10, 2390 5 of 19

ledgers with the help of multiple channels. Fabric provides the mechanisms by means of a
policy (discussed later) which dictates who or which organisation can access which ledger.

2.4.3. Policy

A policy in HF dictates how a particular Fabric blockchain is governed and which
entities within the network have what type of capabilities [33]. For example, policies are
utilised to decide which organisation within the network has access to which resources. In
addition, Fabric uses policies to facilitate an access control mechanism for each user.

2.4.4. DApp

A DApp (Decentralised Application) is an essential component in every blockchain
application. A DApp serves two purposes: (i) on the one hand, it is attached to a peer of
the blockchain network so that it can interact with the blockchain, and (ii) on the other
hand, it exposes web APIs (Application Programmer Interfaces) so that other web or mobile
applications can interact with the blockchain via the API.

2.5. Interactions among HF components

Next, we briefly present how different Fabric components interact with each other
when a transaction is submitted. Figure 1 summarises the flows of activities as discussed
next. To submit a transaction, a user (of an organisation belonging to the Fabric network)
utilises a peer. Once submitted, the peer forwards the transaction to the endorser(s)
(Illustrated in Figure 1 as steps 1, 2, and 4). An endorser validates the transaction by
checking if the user is allowed to perform the requested action in the ledger as encoded
within the transaction (steps 3 and 5 in Figure 1). Once validated, the peer forwards the
validated transaction to the orderer(s). The orderer checks the validated transaction and
creates a block with the transaction(s). Then, the orderer sends the block to the endorsers
and peers. Each peer and endorser adds the block to the blockchain, and this updates the
state of the ledger (steps 6 and 7 in Figure 1). Finally, the user receives a response.

2. Transaction proposal
Peer

Orderer

Endorser

Peer

Endorser Peer

3. Proposal response

4. Transaction
proposal

5. Proposal
response

6. Proposal
response7. New

block

7. New
block

7. New
block

7. New
block

1. Submitted transaction

Fabric

7. New
block

Figure 1. Flow of activities in Fabric

2.6. Deployment Approach in HF

An example of HF deployment in an enterprise use-case between multiple organ-
isations is illustrated in Figure 2. As per the figure, there are four organisations. Each
organisation will need to utilise a peer to connect to the blockchain network and a DApp to
interact with the blockchain via the peer. In most cases, the DApp will be hosted within
the peer so that the organisation does not need to maintain two nodes. A user then either

Processes 2022, 10, 2390 6 of 19

uses a UI (a web browser or a mobile app) to interact with the blockchain application
via the DApp. Here, the blockchain application can be thought of as a combination of
DApps and one or more chaincode within the blockchain platform. The nodes within the
blockchain network is usually deployed using a cluster with Kubernetes [34] or Docker
container swarms.

Peer1

Peer2

DApp1

DApp2

DApp3

DApp4

Peer3

Peer4

Org1

Org2

Org3

Org4

Figure 2. Fabric deployment.

3. Proposed Approach

In this section, we present the motivation (Section 3.1) of our work, the system archi-
tecture and implementation details (Section 3.2) and protocol flow (Section 3.3).

3.1. Motivation

As highlighted earlier, there is one important issue in every blockchain technology:
due to the nature of immutability and the append-only data structure, the ledger inevitably
grows as time goes by. In addition to that, the consumption of other computing resources,
such as CPU, memory, and storage, must be monitored. This is particularly true for
private blockchain systems where a DApp and a peer might need to serve a large user-base
(Figure 2). That is why it is important to monitor the resource consumption of different
nodes within a private blockchain platform, particularly for peer and orderer nodes.

A major sign of exhausted resources within a peer is if the peer struggles to keep up
with the incoming transaction load while performing relatively simple tasks, i.e, querying
the ledger [35]. Similarly, as throughput increases on an ordering node (or orderer), its
resources can become exhausted. This is because all blocks in Fabric are ordered by the
orderer. If it is observed that an orderer struggles with throughput, it might be a sign that
resources might need to increase for its availability [36].

Monitoring resource consumption on these nodes is not enough. There should be a
mechanism to act when the monitoring detects a resource being exhausted on a particular
node. For example, if the storage for a peer is exhausted, there must be way to deploy a new
peer with a larger storage allocation and let the ledger sync. Our research presented in this
article essentially tackles this particular issue. It presents a novel reinforcement learning
machine learning which could be utilised to create a resilient load balancing mechanism for
Hyperledger Fabric. Thus, once this model is integrated, nodes within the Fabric network
could be automatically scaled up and down promptly based on their current resource
consumption parameters.

To scale a container-based application, there are popular approaches such as threshold-
based rules [37], control theory [38], time series analysis [39], and reinforcement learn-
ing [40]. However, in this work, we present and implement a reinforcement-learning-based
method for Hyperledger Fabric so that its scalability issue can be minimised and resource
consumption can be optimised.

Processes 2022, 10, 2390 7 of 19

3.2. System Architecture and Deployment

The top-level architecture for the proposed approach is illustrated in Figure 3. It has
four separate components: blockchain network, DApp, Job Scheduler, and ML module.
The functionalities of each component and how these components have been deployed are
discussed below.

DApp

ML Module Job
Scheduler

User

1. User action through
API Endpoints

4. Action response

2. Request transaction/query
operation

3. Transaction/ query operation
response

5. Request container
resource consumption data

6. Respond with resource
consumption data

7. Sends resource
consumption data

8. Utilise the
data to

update the
model

CA

Chaincode

Peer

Orderer

Blockchain Network

Figure 3. System architecture.

3.2.1. Blockchain Network

The blockchain network in the architecture represents an HF blockchain network
consisting of a number of nodes, such as CAs, Peers (including endorsers), and orderers.
They carry out the functionalities as discussed earlier.

During the implementation, we created a consortium blockchain network consisting of
two organisations, named Org1 and Org2. These two organisations represent a car supply
chain where Org1 plays the role of a car manufacturer, whereas Org2 is a car distributor.
Org1 can add a car when manufactured, and Org2 can query all the available cars ready to
be sold.

Within the implemented network, there is a CA, an orderer, and a peer for each
organisation. Each peer also acts as the endorsing peer. In addition, there are also chaincode
and CouchDB containers for each organisation. All peers are connected via a single channel.
The current version of Hyperledger Fabric supports a RAFT-based CFT (Crush Fault
Tolerant) consensus algorithm. We used this algorithm in our experiments.

3.2.2. DApp

Each peer within the organisation is connected to a DApp. It has two sub-components:
(i) API component exposes API interfaces for the applications, and (ii) the blockchain
component interacts with the blockchain platform. With these two components, DApp
actually facilitates the Business Service which encapsulates the core business functionalities
of the blockchain application, e.g., car creation and car query. It exposes three API end
points for any application and interacts with the chaincode to execute the functionalities
required for these end points. These end points are:

• createCar: Generates a transaction when a new car is added to the organisation.
• queryCar: Queries all the available cars to be sold.
• createUser: Creates a user for a particular organisation.

The DApp has been developed with the Fabric NodeJS SDK.

3.2.3. Job Scheduler

The Job Scheduler serves two purposes:

Processes 2022, 10, 2390 8 of 19

• To collect resource consumption data (e.g., CPU, memory and, storage) for each container.
• To feed these data into the machine learning module (discussed later).

The Job Scheduler was also developed with the Fabric NodeJS SDK.

3.2.4. ML module

The ML component is deployed as a separate ML application which interacts with
the Job Scheduler to receive resource consumption data and prepare the ML model. In
traditional supervised or unsupervised machine learning approaches, a set of static data
is selected firstly. Then, a model is built using the static data set. This type of model can
only learn what the data set contains, and hence, it cannot capture any new scenarios
that might arise and adjust accordingly. Here, we incorporate a special algorithm named
Contextual Multi-Armed Bandits (Algorithm 1) [41] under reinforcement learning (RL) [42].
It is an iterative learning approach. In every iteration, an agent receives a context or feature
vector, performs an action, observes a reward, and updates internal parameters. An RL-
based agent does not require a pre-annotated data set like any supervised learning method.
Instead, it expects rewards from the environment. This is a better approach in comparison
to any data annotation approach, as data annotation might need manual hand engineering
which can also add biases in the data set . In our system, at every 10 s, the job scheduler
module interacts with each container to collect resource data for the respective container
and sends the data back to the ML module.

The contextual bandit algorithm performs as follows. At time t = 1, . . . , n a new
observation or context Xt ∈ Rd comes from the environment and is given to the agent.
The agent suggests one of the k possible actions, at based on its internal model and Xt.
After that, a reward rt is generated based on at and given back to the agent. The agent
receives the reward as feedback and updates its internal model according to the reward.
The agent always tries to increase the mean reward. The pseudocode of the contextual
bandit algorithm is provided below:

Algorithm 1 Multi-armed contextual bandits

1: begin
2: for t← 0 to ∞ do
3: Observe context Xt ∈ Rd

4: Retrieve model θt
5: Action at ← BestAction(Xt, θt)
6: Compute reward rt based on at
7: Renovate model with (Xt, θt, rt)
8: end for
9: end

3.3. Protocol Flow

Now, we present the protocol flows which illustrate how users and different com-
ponents of the proposed system interact with each other. However, first we introduce
mathematical notations (presented in Table 1) and the data model (presented in Table 2).

Data Model: The proposed system represents a request–response model where a
response is generated in accordance with a request. A request in the system is denoted
with req in Table 2, and it consists of two components: type and data. Here, TYPE denotes
different request types and type ∈ TYPE. On the other hand, DATA represents different
data corresponding to each request type and data ∈ DATA. The definitions of TYPE and
DATA are presented in Table 2.

Processes 2022, 10, 2390 9 of 19

Table 1. Cryptographic notations.

Notations Description

KU Public key of the user.
K−1

U Private key of user.
Ni A fresh nonce.
{}K Encryption operation using a public key K.
{}K−1 Signature using a private key K−1.
[]https Communication over HTTPS channel.

Table 2. Data model.

req , 〈type, data〉

TYPE , 〈createCar, queryCar〉

DATA , 〈createCarData, queryCarData〉

createCarData , 〈carNumber, company, model, colour〉

queryCarData , 〈carNumber〉
resp , 〈A message∨ queryCarData〉

stats , 〈CPUusage, Memoryusage〉

Next, createCar in type implies that it is a request for adding a new car with the data set
denoted with createCarData. In createCarData, (carNumber) represents the unique number
of a car which can be used to identify one single car, (company) refers to the manufacturing
company name, (model) refers to the car model name, and (colour) refers to the colour of
the car. This implies that a createCar request must contain a number, company, model, colour,
and owner. Similarly, queryCar in type implies that this request will return the queried
car with queryCarData. In queryCarData, (carNumber) represents the unique number of
the car that is used to add the new car. Finally, resp represents a response which may
contain a message or createCarData. On the other hand, stats represents the (CPUusage)
and (Memoryusage) data.

It is to be highlighted that the req, resp, and its respective contents utilised in the
flows correspond to business services, and stats utilised in flows relate to the interactions
involving the job scheduler and the ML module.

Algorithms: Next, we present Algorithm 2 which encapsulates the functionalities of
the chaincode for facilitating the business services between the car manufacturer and the
car distributor.

When a request (req) is received by the car chaincode (denoted with Car CC in
Algorithm 2), it initiates its invoke function (line 2 in Algorithm 2). Within this invoke
function, data and type from req are retrieved, and any of the two functions, carQFunc, and
createCarFunc are invoked depending on the request type (line 5 to 9 in Algorithm 2). For
example, the carQFunc encodes the logic for querying about a car, whereas the createCarFunc
encodes the functionality of adding a new car. If no data type is matched, then null is
returned (line 10). Once completed, the Car CC algorithm returns a response (resp) back to
the DApp (line 12).

Protocol Flow: Now, we present the protocol flow involving different components
of the proposed architecture. The business service encodes the interactions of a typical
blockchain application, in our case a car management application. As different users use
this application, the job scheduler and the ML module work in the background to collect
resource consumption data and feed the data to the ML module to train the ML model.

Processes 2022, 10, 2390 10 of 19

Algorithm 2 Car CC: / / . Chaincode
Input: req→ the request from the user
Output: resp→ the chaincode generated response

1: begin
2: function invoke(req)
3: data := req.data
4: type := req.type
5: if req.type == queryCar then
6: resp = carQFunc(data);
7: else if req.type == createCar then
8: resp = createCarFunc(data);
9: else

10: resp = (null);
11: end if
12: send resp back to user;
13: end function
14: function carQFunc(data)
15: if data.carNumber then
16: carInfo = getState(data.carNumber);
17: return carInfo;
18: end if
19: return ‘Car number not given’;
20: end function
21: function createCarFunc(data)
22: putState(data.carNumber, data);
23: return ‘New Car Created’;
24: end function
25: end

Within the business service flow, to interact with the blockchain network for submitting
a transaction, e.g., for adding a car entry, every user must have a private key. Generally,
every user is registered at the HF network at first, and then the MSP provides the key
pair for the user. We have skipped this protocol flow for brevity and mostly focused on
the core functionality of adding a car and querying a car. The protocol flow of creating a
car is illustrated in Figure 4. As per the flow, a user signs req (represents either a request
for car creation or car query) with K−1

U f
and transmits it to DApp over an HTTPS channel.

DApp interacts with the MSP to retrieve the public key of the user (KU) which is then
used to validate the signature. DApp then sends req to CCC. Depending on the req type,
either carQFunc or the createCarFunc with (line 5 and 8 in Algorithm 2) is invoked. With the
carQFunc function, the car data of the corresponding car are retrieved from the blockchain
(line 14-20 in Algorithm 2). With the createCarFunc, new car data are stored in the blockchain
(line 21-24 in Algorithm 2). A successful car creation operation will return a “New car created”
response which will be returned back to the user over an HTTPS channel.

Next, we present the protocol flow involving the interactions between the job scheduler,
blockchain Docker containers, and the ML module. The protocol flow for these interactions
is illustrated in Figure 5. At a predefined interval, the job scheduler sends a query for
stats to the containers. The containers return the stats with the CPU usage and memory
usage data in percentage. Then, the job scheduler sends this data (stats) to the ML module.
The ML module utilises the data to prepare a suitable ML model. The job scheduler feeds
the data to the ML module to train it until it shows an optimal result. At this point, it is
considered that an ML model has been found.

Processes 2022, 10, 2390 11 of 19

User DApp MSP
Blockchain Platform

Chaincode

Validate signature
in the transaction

Figure 4. Car creation and query flow.

Job Scheduler ML Module

Blockchain Platform

Peer Orderer

CA

Request for stats

stats

stats

Update
ML model

Figure 5. Blockchain network with ML model.

4. Experiment and Performance Analysis

To carry out the experiments involving our proposed architecture, it is important to
find the optimal configurations under which the experiments can be carried out. For this
purpose, we have utilised Hyperledger Caliper [43]. Caliper is a blockchain benchmarking
tool for Hyperledger-based blockchain platforms, including Hyperledger Fabric. Using
Caliper, the performance of any blockchain implementation can be measured under a
predefined network configuration.

After experimenting and testing with different Caliper configurations, we have iden-
tified and opted for the following optimal configurations. The Batch Timeout (signifying
the amount of time to wait before creating a batch of transactions) is set as 2 s with the
maximum message count for a batch set to 500. The transaction rate is set to 60 to 100 per
second. In each iteration with five users, the transaction rate is increased by 10. Under these
configurations, we carried out each experiment four times. The results of these experiments
are then averaged. The generated result is presented in Figure 6 where the X axis represents
the transaction request rate sent by users, and the Y axis shows the actual transaction per
second (TPS).

Processes 2022, 10, 2390 12 of 19

60 70 80 90 10024.92 30.63 42.4 35.7 52.25
0

20

40

60

80

100

1 2 3 4 5

TP
S

RA
TE

Input TPS Rate Actual TPS Rate

Figure 6. Performance on TPS.

Once the optimal configurations were fixed, the next step was to carry out the main exper-
iments involving the proposed architecture. For these experiments, to deploy the HF network,
a Docker swarm cluster was deployed on a desktop having the following configurations:

• Ubuntu 18.04-64 OS,
• Intel(R) Core i5-8265U @1.60 GHz quad-core CPU,
• 8 GB DDR4 RAM,
• 256 GB SSD,
• 1 TB HDD,
• 2 GB GeForce MX150 Graphics GPU.

The resources allocated for each network entity under the Docker swarm cluster node
are shown in Table 3. As mentioned earlier, we simulated a scenario where five users
from two organisations submitted different transactions via the DApp for creating cars and
querying cars, essentially simulating the business service logic. While these transactions
were being submitted, the job scheduler module would collect resource consumption
data from different entities and the steps discussed above were followed to optimise the
ML model.

Table 3. Blockchain network resource allocation

Container
Name

CPU Limit (in
CPU Share)

CPU
Reservation

Memory Limit
(in MBs)

Memory
Reservation

Peer 1 Org1 0.10 0.05 100 M 50 M
CouchDB 1 0.20 0.05 150 M 50 M
Peer 1 Org2 0.10 0.05 100 M 50 M
CouchDB 2 0.20 0.05 150 M 50 M

orderer 1 0.10 0.05 100 M 50 M
CA Org1 0.10 0.05 100 M 50 M
CA Org2 0.10 0.05 100 M 50 M

4.1. Data Collection

For the data collection phase, simulated scenarios were created where users from two
organisations either created new cars by utilising the createCar end point or submitted
queries using the queryCar end point. Among all the requests, 70% were for creating cars
and 30% were for querying cars. This is because creating a car would require submitting
a transaction thereby consuming more resources, while querying a car does not require
submitting any transaction. Different scenarios were simulated for a period of around 7 h.
The requests varied from time to time during this period. For one time period, a higher
number of requests were generated, and for another period the number of requests was
reduced. In addition, no requests were sent to the end points for some periods. Thus,

Processes 2022, 10, 2390 13 of 19

all possible situations were covered while data were being collected. Figure 7 shows the
collected data for the container resources during the simulated experiment. The blue line
in Figure 7 represents the memory usage, and the green line represents the CPU usage in
percentage. In this whole data collection phase, a total of 2651 transactions were successfully
submitted, and 1007 blocks were created for these transactions.

07:20:50 08:43:42 10:03:19 11:23:22 12:48:54 14:10:31
Time

0

20

40

60

80

100

Re
so

ur
ce

 u
til

iza
tio

n
in

 %

07:20:50 08:41:36 10:01:15 11:20:22 12:45:39 14:06:44
Time

0

10

20

30

40

50

60

Re
so

ur
ce

 u
til

iza
tio

n
in

 %
(a) (b)

07:20:50 08:43:42 10:03:19 11:23:22 12:48:54 14:10:31
Time

0

20

40

60

80

100

Re
so

ur
ce

 u
til

iza
tio

n
in

 %

07:20:50 08:41:36 10:01:15 11:20:22 12:45:39 14:06:44
Time

0

10

20

30

40

50

Re
so

ur
ce

 u
til

iza
tio

n
in

 %

(c) (d)

07:20:50 08:41:36 10:01:15 11:20:31 12:45:49 14:06:54
Time

0

20

40

60

80

100

Re
so

ur
ce

 u
til

iza
tio

n
in

 %

(e)

Figure 7. RAM and CPU utilization in percentage scale with respect to time: (a) Peer 1 Org 1;
(b) CouchDB for Peer 1 Org 1; (c) Peer 1 Org 2; (d) D CouchDB for Peer 1 Org 2; (e) Orderer.

Figure 7a shows the container resources of Peer 1 of organisation 1 (Org 1 in short)
and the corresponding world-state database container data are shown in Figure 7b. As
can be seen from the beginning in Figure 7a, Peer 1 of Org 1 receives a high of number
requests resulting in spikes in memory and CPU usage. When the memory consumption
was increased to 100% of its capacity, the peers container crashed due to the memory out

Processes 2022, 10, 2390 14 of 19

of bound issue. The container started after a few seconds and started receiving requests
again. From Figure 7b, we can see the resource consumption for the world-state CouchDB
(the ledger) associated with Peer 1 Org 1, and it consumes its memory gradually with high
throughput as the time goes by. After a period at 08:43, we stopped sending requests to
peers, and the resource consumption stayed the same. After 10:30, we started sending
requests again, however, with a mixed send rate.

The graphs shown in Figure 7c,d represent the resource consumption of Peer 1 of
Org 2 and the CouchDB container associated with it, respectively. As these containers
received requests similar to Peer 1 of Org 1, these graphs are also similar to the graphs of
Peer 1 of Org 1. In Figure 7e, the resource consumption of the orderer is shown. As the
orderer receives more requests, the resource consumption increases gradually until the
requests to the orderer stopped coming.

4.2. Feature Extraction

The data set contains the percentage usage of RAM and CPU at every 10 s interval
for different containers. However, we do not only consider a single time moment record,
rather we inspect a fixed window of previous time moment records for understanding
the current resource usage trend. If the current RAM usage is Rt, then we firstly take six
records (Rt−5, Rt−4, · · · , Rt) including the current one as our predefined window length
is six. Then, we generate five features taking deviations with respect to Rt−5. The first
feature value is Rt−5 − Rt−4 which denotes the increment in RAM usage compared to 40 s
ago. The second feature value is Rt−5 − Rt−3 and so on. A similar strategy is applied
for the CPU usage as well. If the current CPU usage is Ct, then we extract these records
Ct−5 − Ct−4, Ct−5 − Ct−3, · · · , Ct−5 − Ct−1. Thus, these 10 features extracted from the data
set are then used with the selected reinforcement learning model.

4.3. Result

We adopt an average reward to evaluate the performance of the agent. After each
iteration, the agent receives a reward based on how intelligently it chose the action at that
particular iteration. For example, when CPU and RAM usage are high and the agent takes
the action to scale down containers, then it will receive a reward close to 0.0. Similarly,
when the agent takes the scale up action instead in the same situation, it will receive a
positive reward close to 1.0. Consequently, an average reward after t iteration is defined by

R̄t =
∑t

i=1 Ri

t
; R̄t ∈ [0.0, 1.0]

As the agent continuously receives rewards and fine-tunes its understandings, it is ex-
pected that the average reward trend will be increasing with the increment of iteration, and
it is always expected that average reward will converge to one. We have trained six agents
separately. Figure 8a–e represent the average reward curves for Figure 7a–e, respectively.

The one common thing is that each agent’s mean reward trend is increasing and
converging to 1.0 after a certain number of iterations, and before that we can observe many
fluctuations. The reason for fluctuations at the starting is that the agent did not experience
sufficient scenarios to perform properly. From the example in Figure 8, we can see that the
mean reward in Figure 8a,e starts to increase smoothly after approximately 100 iterations;
however, it takes less steps in others. The reason behind this phenomenon is because of the
many fluctuations in percentage usage of RAM for Figure 8a,e.

Processes 2022, 10, 2390 15 of 19

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
re

wa
rd

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

72
0

Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
re

wa
rd

(a) (b)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
re

wa
rd

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
re

wa
rd

(c) (d)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n
re

wa
rd

(e)

Figure 8. Mean reward trending curve captured at every iteration: (a) Peer 1 Org 1; (b) CouchDB for
Peer 1 Org 1; (c) Peer 1 Org 2; (d) D CouchDB for Peer 1 Org 2; (e) Orderer.

5. Discussion

In this section, we present a discussion regarding the advantages of the proposed
approach, the envisioned application of the model, and any possible future work.

Advantage: The special reinforcement learning algorithm, multi-armed contextual
bandit accelerates the learning process. From our results, we can see that it takes less
than 1000 iterations to converge the mean reward curve in every case. As the technique
is exploratory, it can introduce completely new solutions that were never even observed.
Moreover, if there exists any bias during the data annotation procedure, supervised learning
will learn from the inherited bias. In this sense, reinforcement techniques are preferable.

Although scalability is a well-known problem in blockchain, it is mostly applicable to
public blockchain systems. Private blockchain systems are designed to be scalable [16,44].
Even so, it might be increasingly difficult with the addition of RL techniques. To mitigate
this, the training for RL techniques must be repeated on a regular basis in the backend.

Processes 2022, 10, 2390 16 of 19

The proposed method uses multi-armed bandit learning which is less complex than other
algorithms and can be adopted for both small-scale and large-scale networks.

Envisioned application: Next, we explore how this model can be utilised within a real
system. One possibility is that it can be integrated with a blockchain system in a very similar
way to how we have integrated the ML module with the job scheduler. However, the role
of this envisioned system will be different from ours. For example, the main purpose of the
ML module presented in this work is to prepare a model by training it appropriately. Once
the model is ready, we can extend the ML module for making decisions based on current
resource consumption and then extend the job scheduler to pass on this decision taken by
the ML module to the blockchain platform. One way this can be achieved is by the creating
additional data models of decision action as presented in Table 4. Then, we can extend the
flow in Figure 5 with the flow presented in Figure 9.

Job Scheduler Trained ML Module

Blockchain Platform

Peer Orderer

CA

Request for stats

stats

stats

decision

action

Action
taken

Figure 9. Envisioned protocol flow using the trained ML module.

Table 4. Additional data model.

decision , 〈UP, DOWN, STABLE〉

action , 〈UP∨DOWN〉

To explain our vision, the decision represents one of the three decisions the ML module
can take: UP, DOWN, and STABLE. Based on the value of the decision, the job sched-
uler will request one of the actions: UP or DOWN. For example, if the job scheduler
receives an UP decision, it will send the UP value as part of the actions to the blockchain
platform. The blockchain platform will consequently either scale up the resources of the
corresponding entity or not.

Comparative Analysis: Next, we present a comparative analysis between existing
works with our proposed work against a set of criteria where the selected criteria represent
the crucial properties used in this work. The comparative analysis is presented in a tabular

Processes 2022, 10, 2390 17 of 19

format in Table 5 for better visualisation. In Table 5, the symbol ‘ ’ is used to denote that
a certain criterion is fulfilled by the respective work, whereas ‘#’ denotes that a certain
criterion is not fulfilled. As evident from Table 5, our work satisfies all the criteria where
the works from other researchers have failed to satisfy all the selected criteria.

Table 5. Comparative analysis of existing works with the proposed work.

Research Work Load Balancing ML Approach Container Private Blockchain

Rossi et al. [9] # Reinforcement Learning #

Goli et al. [10] #
Linear Regression, Random Forest,

and Support Vector Regressor #

Dang-Quang et al. [11] Bidirectional LSTM #
Hamid et al. [13] Reinforcement Learning # #
Xinjie et al. [14] # # #

Our work Reinforcement Learning

Future Work: In this work, our focus has been to present the motivation and methods
for creating an ML model which will be suitable for load balancing the resources in the
Hyperledger Fabric network. In future, we would like to integrate this model into the
whole system as envisioned above and investigate its utility. In addition, we would also
like to explore how this model can be integrated with other private blockchain platforms.

6. Concluding Remarks

The adoption of private blockchain platforms within different enterprise applications
(including industrial control systems [45]) will be an important trend in the coming years.
Hyperledger Fabric, being one of the most popular private blockchain platforms, will
play a key role in this trend. However, load balancing of resourcing within the node of
the blockchain is an important issue which is often overlooked. In this article, we have
presented the first-ever reinforcement-learning-based machine learning (ML) model for
load balancing of resources for Hyperledger Fabric. We have presented the architecture
of the proposed method and analysed the interactions of different components of the
architecture via protocol flows. We have detailed out the procedures for data collection and
training an optimal ML model. We have elaborated how this model can be integrated within
any Fabric application. Industrial applications might be required to serve a huge amount
of input loads, and without such a load balancer, the corresponding node of the blockchain
solution needs to be dynamically scaled up and down. Otherwise, the performance would
degrade significantly. The approach presented in this article could be an effective tool
in this situation; hence, this ML-based load balancing mechanism could be an important
component to deploy blockchain solutions in industrial applications. In addition, the
proposed solution could be applied to any industrial application and service business,
including energy sectors, finance, healthcare, education, and smart industries [46,47]. It is
to be noted that even though we have focused our proposal on Hyperledger Fabric, it can be
easily integrated with other private blockchain platforms which rely on a container-based
model. Thus, we strongly believe that the proposal will open up a new avenue of research
within the private blockchain domain.

Author Contributions: Conceptualization, R.A., M.A. and M.S.F.; methodology, R.A., M.A. and
M.S.F.; software, M.S.I.B. and R.S.R.; investigation, M.A. and M.S.F.; resources, R.A. and M.S.F.;
writing—original draft, R.A., M.A., M.S.I.B., R.S.R. and M.S.F.; preparation, R.A., M.A. and M.S.F.;
writing—review and editing, R.A. and M.S.F.; project administration, R.A.; funding acquisition, R.A.
All authors have read and agreed to the published version of the manuscript.

Funding: The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah,
Saudi Arabia has funded this project, under grant No. (G-195-612-1443).

Processes 2022, 10, 2390 18 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Antwi, M.; Adnane, A.; Ahmad, F.; Hussain, R.; Habib ur Rehman, M.; Kerrache, C.A. The case of HyperLedger Fabric as a

blockchain solution for healthcare applications. Blockchain Res. Appl. 2021, 2, 100012. [CrossRef]
2. Bhuiyan, M.S.I.; Razzak, A.; Ferdous, M.S.; Chowdhury, M.J.M.; Hoque, M.A.; Tarkoma, S. BONIK: A Blockchain Empowered

Chatbot for Financial Transactions. In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; pp. 1080–1089. [CrossRef]

3. Falah, B.; Touhs, H.; Karroumi, S.; Abufardeh, S. An Overview of a Blockchain Application in Education Using Hyperledger
Project. In Proceedings of the 7th International Conference on Higher Education Advances (HEAd’21), Virtual, 22–23 June 2021;
Editorial Universitat Politecnica de Valencia: Valencia, Spain, 2021; pp. 993–1001. [CrossRef]

4. Hyperledger. Available online: https://www.hyperledger.org/ (accessed on 9 March 2022).
5. Fabric, H. Introduction. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html (accessed on

9 March 2022).
6. Burrow, H. Introduction. Available online: https://hyperledger.github.io/burrow/#/README (accessed on 26 December 2021).
7. Sawtooth, H. Overview. Available online: https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#dyn

amic-consensus (accessed on 26 December 2021).
8. Iroha, H. Dynamic Consensus. Available online: https://iroha.readthedocs.io/en/develop/overview.html (accessed on

26 December 2021)
9. Rossi, F.; Nardelli, M.; Cardellini, V. Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement

Learning. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July
2019; pp. 329–338.

10. Goli, A.; Mahmoudi, N.; Khazaei, H.; Ardakanian, O. A Holistic Machine Learning-Based Autoscaling Approach for Microservice
Applications. In Proceedings of the 11th International Conference on Cloud Computing and Services Science—CLOSER, Online
Streaming, 28–30 April 2021; pp. 190–198.

11. Dang-Quang, N.M.; Yoo, M. Deep Learning-Based Autoscaling Using Bidirectional Long Short-Term Memory for Kubernetes.
Appl. Sci. 2021, 11, 3835. [CrossRef]

12. Zhong, Z.; Xu, M.; Rodriguez, M.A.; Xu, C.; Buyya, R. Machine Learning-Based Orchestration of Containers: A Taxonomy and
Future Directions. ACM Comput. Surv. 2022, 54, 1–35. [CrossRef]

13. Arabnejad, H.; Pahl, C.; Jamshidi, P.; Estrada, G. A Comparison of Reinforcement Learning Techniques for Fuzzy Cloud
Auto-Scaling. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Madrid,
Spain, 14–17 May 2017; pp. 64–73. [CrossRef]

14. Guan, X.; Wan, X.; Choi, B.Y.; Song, S.; Zhu, J. Application Oriented Dynamic Resource Allocation for Data Centers Using Docker
Containers. IEEE Commun. Lett. 2016, 21, 504–507. [CrossRef]

15. Berentsen, A. Aleksander Berentsen Recommends ’Bitcoin: A Peer-to-Peer Electronic Cash 589 System’ by Satoshi Nakamoto. In
21st Century Economics: Economic Ideas You Should Read and 590 Remember; Frey, B.S.; Schaltegger, C.A., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; Volume 591, pp. 7–8. [CrossRef]

16. Chowdhury, M.J.M.; Ferdous, M.S.; Biswas, K.; Chowdhury, N.; Kayes, A.; Alazab, M.; Watters, P. A Comparative Analysis of
Distributed Ledger Technology Platforms. IEEE Access 2019, 7, 167930–167943. [CrossRef]

17. Ferdous, M.S.; Chowdhury, M.J.M.; Hoque, M.A. A survey of consensus algorithms in public blockchain systems for crypto-
currencies. J. Netw. Comput. Appl. 2021, 182, 103035. [CrossRef]

18. Ferdous, M.S.; Chowdhury, F.; Alassafi, M.O. In Search of Self-Sovereign Identity Leveraging Blockchain Technology. IEEE Access
2019, 7, 103059–103079. [CrossRef]

19. Ethereum. Available online: https://www.ethereum.org/ (accessed on 10 March 2022).
20. Cardano. Available online: https://cardano.org/ (accessed on 10 March 2022).
21. Polkadot. Available online: https://polkadot.network/ (accessed on 10 March 2022).
22. Bitcoin. Available online: https://www.bitcoin.org/ (accessed on 10 March 2022).
23. Litecoin. Available online: https://litecoin.org/ (accessed on 10 March 2022).
24. Monero. Available online: https://www.getmonero.org/ (accessed on 10 March 2022).
25. Quorum Blockchain. Available online: https://www.goquorum.com/ (accessed on 10 March 2022).
26. Hyperledger Fabric. Available online: https://hyperledger-fabric.readthedocs.io/en/release/blockchain.html (accessed on

5 March 2022).
27. SBFT. Available online: http://sammantics.com/blog/2016/7/27/chain-1 (accessed on 16 December 2021).
28. Fabric Certificate Authority. Available online: https://hyperledger-fabric-ca.readthedocs.io/en/v1.5.0/users-guide.html#overv

iew (accessed on 1 February 2022).
29. Orderer. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html (accessed

on 25 January 2022).

http://doi.org/10.1016/j.bcra.2021.100012
http://dx.doi.org/10.1109/TrustCom50675.2020.00143
http://dx.doi.org/10.4995/HEAd21.2021.12932
https://www.hyperledger.org/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger.github.io/burrow/#/README
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#dynamic-consensus
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#dynamic-consensus
https://iroha.readthedocs.io/en/develop/overview.html
http://dx.doi.org/10.3390/app11093835
http://dx.doi.org/10.1145/3510415
http://dx.doi.org/10.1109/CCGRID.2017.15
http://dx.doi.org/10.1109/LCOMM.2016.2644658
http://dx.doi.org/10.1007/978-3-030-17740-9_3
http://dx.doi.org/10.1109/ACCESS.2019.2953729
http://dx.doi.org/10.1016/j.jnca.2021.103035
http://dx.doi.org/10.1109/ACCESS.2019.2931173
https://www.ethereum.org/
https://cardano.org/
https://polkadot.network/
https://www.bitcoin.org/
https://litecoin.org/
https://www.getmonero.org/
https://www.goquorum.com/
https://hyperledger-fabric.readthedocs.io/en/release/blockchain.html
http://sammantics.com/blog/2016/7/27/chain-1
https://hyperledger-fabric-ca.readthedocs.io/en/v1.5.0/users-guide.html#overview
https://hyperledger-fabric-ca.readthedocs.io/en/v1.5.0/users-guide.html#overview
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html

Processes 2022, 10, 2390 19 of 19

30. Chaincode. Available online: http://hyperledger-fabric.readthedocs.io/en/release/chaincode.html (accessed on 15 December 2021).
31. Ledger. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html (accessed on

15 December 2021).
32. Channels. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/channels.html (accessed on 13 February 2022).
33. Hyperledger Fabric Policies. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/policies/policies.html#

(accessed on 25 February 2022).
34. Kubernetes. Available online: https://kubernetes.io/ (accessed on 8 March 2022).
35. Peer Monitoring. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploypeer/peerplan.html#monit

oring (accessed on 27 February 2022).
36. Orderer monitoring. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/deployorderer/ordererplan.h

tml#storage-considerations-and-monitoring (accessed on 10 March 2022).
37. Dutreilh, X.; Rivierre, N.; Moreau, A.; Malenfant, J.; Truck, I. From Data Center Resource Allocation to Control Theory and Back.

In Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, Miami, FL, USA, 5–10 July 2010; pp. 410–417.
38. Jamshidi, P.; Pahl, C.; Mendonça, N. Managing Uncertainty in Autonomic Cloud Elasticity Controllers. IEEE Cloud Comput. 2016,

3, 50–60. [CrossRef]
39. Lorido-Botrán, T.; Miguel-Alonso, J.; Lozano, J. A Review of Auto-scaling Techniques for Elastic Applications in Cloud

Environments. J. Grid Comput. 2014, 12, 559–592. [CrossRef]
40. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction. Robotica 1999, 17, 229–235. [CrossRef]
41. Lu, T.; Pál, D.; Pál, M. Contextual multi-armed bandits. In Proceedings of the Thirteenth international conference on Artificial

Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 485–492.
42. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
43. Hyperledger Caliper. Available online: https://www.hyperledger.org/use/caliper (accessed on 11 January 2022).
44. Ferdous, M.S.; Chowdhury, M.J.M.; Hoque, M.A.; Colman, A. Blockchain Consensus Algorithms: A Survey. arXiv 2020,

arXiv:2001.07091.
45. Hua, G.; Zhu, L.; Wu, J.; Shen, C.; Zhou, L.; Lin, Q. Blockchain-based federated learning for intelligent control in heavy haul

railway. IEEE Access 2020, 8, 176830–176839. [CrossRef]
46. Wu, Y.; Wang, Z.; Ma, Y.; Leung, V.C. Deep reinforcement learning for blockchain in industrial IoT: A survey. Comput. Netw. 2021,

191, 108004. [CrossRef]
47. Li, Y.; Shan, B.; Li, B.; Liu, X.; Pu, Y. Literature review on the applications of machine learning and blockchain technology in

smart healthcare industry: A bibliometric analysis. J. Healthc. Eng. 2021, 2021, 9739219. [CrossRef] [PubMed]

http://hyperledger-fabric.readthedocs.io/en/release/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/channels.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/policies/policies.html#
https://kubernetes.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploypeer/peerplan.html#monitoring
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploypeer/peerplan.html#monitoring
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deployorderer/ordererplan.html#storage-considerations-and-monitoring
https://hyperledger-fabric.readthedocs.io/en/release-2.2/deployorderer/ordererplan.html#storage-considerations-and-monitoring
http://dx.doi.org/10.1109/MCC.2016.66
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1109/TNN.1998.712192
http://dx.doi.org/10.1613/jair.301
https://www.hyperledger.org/use/caliper
http://dx.doi.org/10.1109/ACCESS.2020.3021253
http://dx.doi.org/10.1016/j.comnet.2021.108004
http://dx.doi.org/10.1155/2021/9739219
http://www.ncbi.nlm.nih.gov/pubmed/34426765

	Introduction
	Background
	Blockchain
	Private Blockchain System: Hyperledger
	Hyperledger Fabric (HF)
	Core Components of HF
	Nodes
	Chaincode, Ledger, and Channel
	Policy
	DApp

	Interactions among HF components
	Deployment Approach in HF

	Proposed Approach
	Motivation
	System Architecture and Deployment
	Blockchain Network
	DApp
	Job Scheduler
	ML module

	Protocol Flow

	Experiment and Performance Analysis
	Data Collection
	Feature Extraction
	Result

	Discussion
	Concluding Remarks
	References

