11 research outputs found

    Identification of Two Independent Risk Factors for Lupus within the MHC in United Kingdom Families

    Get PDF
    The association of the major histocompatibility complex (MHC) with SLE is well established yet the causal variants arising from this region remain to be identified, largely due to inadequate study design and the strong linkage disequilibrium demonstrated by genes across this locus. The majority of studies thus far have identified strong association with classical class II alleles, in particular HLA-DRB1*0301 and HLA-DRB1*1501. Additional associations have been reported with class III alleles; specifically, complement C4 null alleles and a tumor necrosis factor promoter SNP (TNF-308G/A). However, the relative effects of these class II and class III variants have not been determined. We have thus used a family-based approach to map association signals across the MHC class II and class III regions in a cohort of 314 complete United Kingdom Caucasian SLE trios by typing tagging SNPs together with classical typing of the HLA-DRB1 locus. Using TDT and conditional regression analyses, we have demonstrated the presence of two distinct and independent association signals in SLE: HLA-DRB1*0301 (nominal p = 4.9 × 10−8, permuted p < 0.0001, OR = 2.3) and the T allele of SNP rs419788 (nominal p = 4.3 × 10−8, permuted p < 0.0001, OR = 2.0) in intron 6 of the class III region gene SKIV2L. Assessment of genotypic risk demonstrates a likely dominant model of inheritance for HLA-DRB1*0301, while rs419788-T confers susceptibility in an additive manner. Furthermore, by comparing transmitted and untransmitted parental chromosomes, we have delimited our class II signal to a 180 kb region encompassing the alleles HLA-DRB1*0301-HLA-DQA1*0501-HLA-DQB1*0201 alone. Our class III signal importantly excludes independent association at the TNF promoter polymorphism, TNF-308G/A, in our SLE cohort and provides a potentially novel locus for future genetic and functional studies

    Enumerating regulatory T cells in cryopreserved umbilical cord blood samples using FOXP3 methylation specific quantitative PCR.

    Get PDF
    BackgroundAllogeneic haematopoietic cell transplantation (HCT) is a curative therapy for severe haematological disorders. However, it carries significant risk of morbidity and mortality. To improve patient outcomes, better graft selection strategies are needed, incorporating HLA matching with clinically important graft characteristics. Studies have shown that the cellular content of HCT grafts, specifically higher ratios of T regulatory (Tregs)/T cells, are important factors influencing outcomes when using adult peripheral blood mobilised grafts. So far, no equivalent study exists in umbilical cord blood (CB) transplantation due to the limitations of cryopreserved CB samples.Study design and methodsTo establish the most robust and efficient way to measure the Treg content of previously cryopreserved CB units, we compared the enumeration of Treg and CD3+ cells using flow cytometry and an epigenetic, DNA-based methodology. The two methods were assessed for their agreement, consistency and susceptibility to error when enumerating Treg and CD3+ cell numbers in both fresh and cryopreserved CB samples.ResultsEpigenetic enumeration gave consistent and comparable results in both fresh and frozen CB samples. By contrast, assessment of Tregs and CD3+ cells by flow cytometry was only possible in fresh samples due to significant cell death following cryopreservation and thawing.ConclusionEpigenetic assessment offers significant advantages over flow cytometry for analysing cryopreserved CB; similar cell numbers were observed both in fresh and frozen samples. Furthermore, multiple epigenetic assessments can be performed from DNA extracted from small cryopreserved CB segments; often the only CB sample available for clinical studies

    The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans

    Get PDF
    Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic HLA class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems. Includes Supporting Material (44 pp.

    HLA Typing for the Next Generation

    No full text
    <div><p>Allele-level resolution data at primary HLA typing is the ideal for most histocompatibility testing laboratories. Many high-throughput molecular HLA typing approaches are unable to determine the phase of observed DNA sequence polymorphisms, leading to ambiguous results. The use of higher resolution methods is often restricted due to cost and time limitations. Here we report on the feasibility of using Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology for high-resolution and high-throughput HLA typing. Seven DNA samples were typed for HLA-A, -B and -C. The results showed that SMRT DNA sequencing technology was able to generate sequences that spanned entire HLA Class I genes that allowed for accurate allele calling. Eight novel genomic HLA class I sequences were identified, four were novel alleles, three were confirmed as genomic sequence extensions and one corrected an existing genomic reference sequence. This method has the potential to revolutionize the field of HLA typing. The clinical impact of achieving this level of resolution HLA typing data is likely to considerable, particularly in applications such as organ and blood stem cell transplantation where matching donors and recipients for their HLA is of utmost importance.</p></div

    Basic stages of the Single Molecule Real-Time (SMRT) DNA sequencing method.

    No full text
    <p>SMRTbell adaptors are ligated onto the ends of a blunt-ended PCR amplicon to facilitate continuous sequencing of both strands of the amplicon. The entire sequence generated may include multiple copies of the sense and anti-sense strands of the PCR amplicon in a single read known as the Continuous Long Read (CLR). The post-sequencing bioinformatic post-processes are able to break down the CLR into shorter sub-reads, which encompass the sequence of one strand of the amplicon. These sub-reads can then be compared and used to create a consensus sequence.</p
    corecore