55 research outputs found

    AlCoNiFeCrTiVx High-Entropy Coatings Prepared by Electron-Beam Cladding

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in "A. D. Pogrebnjak and O. Bondar (eds.), Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019), Springer Proceedings in Physics 240". The final authenticated version is available online at: https://doi.org/10.1007/978-981-15-1742-6_16.This study reports the investigation of high-entropy coatings obtained by electron-beam cladding in a vacuum of Al-Co-Ni-Fe-Cr-Ti-Vx powder blend on a steel substrate. V was added to the Al-Co-Ni-Fe-Cr-Ti equiatomic system and the effects of this added element on structure, phase composition and microhardness of AlCoNiFeCrTiVx high entropy coatings resulted from electron beam cladding were studied. The AlCoNiFeCrTiV0 coatings consist of two solid solutions with BCC1 and BCC structure with different lattice parameters and a small volume fraction of σ-phase. It was shown that with an increase in V content from x = 0 to x = 1.5, the phase composition of the coatings transforms from two solid solutions to single BCC solid solution and σ-phases of different compositions. The σ-phase volume fraction increased with an increase in the V content. The addition of V to AlCoNiFeCrTi shows the strengthening effect of the AlCoNiFeCrTiV0.5–1.5 coatings and the Vickers hardness increased from 8.4 to 11 GPa. Microhardness of the coatings was affected by the sigma phase. The hardness enhancement can be likely attributed to the effect of solid solution strengthening and to the presence of σ-phase particles in the coating structure

    Hardening and corrosion behaviour of copper added SUS 304H austenitic steels subjected to thermal cycling

    No full text
    This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared

    Effect of copper addition on the fracture and fatigue crack growth behavior of solution heat-treated SUS 304H austenitic steel

    No full text
    Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved

    Influence of tempered microstructures on the transformation behaviour of cold deformed and intercritically annealed medium carbon low alloy steel

    No full text
    This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 °C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 °C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected α → γ transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 °C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics
    corecore