29 research outputs found

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of >= 20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response "Mean: 561.11". Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients' previous medical history (anamnesis) should be considered in interpreting serological results.Peer reviewe

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Full text link
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results. Keywords: SARS-CoV-2; ELISA; micro-neutralization assay; IgM; IgA; IgG ELISA; Makkah; Saudi Arabi

    Clinical and Serological Findings of COVID-19 Participants in the Region of Makkah, Saudi Arabia

    Get PDF
    Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response “Mean: 561.11”. Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients’ previous medical history (anamnesis) should be considered in interpreting serological results

    Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC).

    Get PDF
    Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC. [Abstract copyright: © 2024 Kunlun et al.

    The Impact of Psychosocial Factors of Physical Health Outcomes: A Review of the Biopsychosocial Model in Family Medicine

    Get PDF
    Discontent with the biological model of illness—which is still the predominant healthcare model—led to the development of the biopsychosocial model, which was described in Engel's seminal Science paper forty years ago. It is the foundation of the International Classification of Functioning (WHO ICF) developed by the World Health Organization Clinical outcomes for functional disorders and chronic diseases treated in family medicine may be improved by the biopsychosocial approach. Since clinical performance metrics and standards are biomedically focused, family medicine doctors have no financial incentive to implement the biopsychosocial paradigm in their practices. Implementing the biopsychosocial approach in family medicine may be hampered by workload and incompetence

    Uridine Derivatives: Synthesis, Biological Evaluation, and In Silico Studies as Antimicrobial and Anticancer Agents

    No full text
    Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2′,3′-di-O-cinnamoyl-5′-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure–activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s)

    Experimental Analysis of Channel Steel Member under Tension Load with Damage in the Unconnected Legs

    No full text
    Damage occurring to steel element structures is highly possible due to tearing ruptures, corrosion, or the adoption of sudden loads. The damage has a great effect on their capacity to bear load and the corresponding elongation, as well as the distribution of the stresses in the cross-section of the element. Therefore, in the present research, experimental tests were carried out on 15 specimens of channel steel elements with different damage ratios in the unconnected legs and at different locations along the element’s length. Through the test, the load and the corresponding elongation values were obtained for the control and damaged specimens. From the study of the different variables, it was demonstrated that the damage location does not significantly affect the load capacity, with a maximum difference of 1.9%. With the presence of the damage in only one leg at a ratio of less than or equal to 40%, the prediction of the value of the loss in the load is within the safe limit. However, if this ratio increases, there is a defect in calculating the loss in the load as it is greater than the effect of the damage. If there is any damage in the two legs of the channel together, the prediction of the loss of load is within the safe limit, where the loss is less than the effect of the damage ratio. We propose a model that can predict the capacitance of the axial load of steel channel elements through identifying the ratio of damage in the unconnected leg

    In Vitro Evaluation of <i>Leuconostoc mesenteroides</i> Cell-Free-Supernatant GBUT-21 against SARS-CoV-2

    No full text
    The unprecedented health catastrophe derived from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 infection) met with a phenomenal scientific response across the globe. Worldwide, the scientific community was focused on finding a cure for the deadly disease. A wide range of research studies has consistently revealed the link between SARS-CoV-2 infection severity and abnormal gut microbiomes, suggesting its potential in developing novel therapeutic approaches. Probiotics have been extensively studied to promote health in human hosts and reestablish a balance in the dysbiotic gut microbiome; however, there is strong skepticism about their safety and efficacy. Consequently, the metabolic signatures of probiotics, often referred to as "postbiotics", could prove of paramount importance for adjuvant cures in patients with SARS-CoV-2. Postbiotics exhibit safety, enhanced shelf-life, and stability and, therefore, could be implemented in SARS-CoV-2 prophylactic strategies with no undue adverse side effects. The current study is a preliminary investigation of the antiviral properties of postbiotic metabolites derived from Leuconostoc mesenteroides GBUT-21. The study focuses on the potential biological role in inactivating SARS-CoV-2 and reducing related inflammatory pathways

    Theoretical analysis of the removal mechanism of Crystal Violet and Acid Red 97 dyes on Agaricus bisporus residue

    No full text
    In this paper, the Agaricus bisporus residue (ABR) is employed as an adsorbent to study the adsorption mechanism of two relevant dyes, namely Crystal Violet (CV) and Acid Red 97 (AR97). The adsorption mechanism is theoretically analyzed by application of models derived from statistical physics and the model parameters derived from the best fitting are used for the interpretation of the experimental results. A double-layer model best fitsboth CV and AR97 experimental data,showing that AR97 molecules aggregate only at high temperature forming a dimer (n = 2.55 at T = 328 K). Similarly, CV dye tends to form a monomer with a slight tendency to a dimer at high temperature.AR97 dye is adsorbed through a non-parallel orientation on the ABR surface at most of the investigated temperatures (T = 298, 318 and 328 K), while CV dye is removed via both parallel and non-parallel orientations. The analysis of the adsorption capacity suggests that ABR adsorbent has a stronger affinity to remove AR97. The calculation of the adsorption energies indicated that the adsorption process is a physisorption
    corecore