10 research outputs found

    The impact of networks on clinical trials in the United Kingdom

    Get PDF
    The conduct of clinical trials in the UK has been affected by the recent introduction of managed clinical networks, clinical research networks and rigorous governance regulations. This commentary considers the challenges that these changes have posed for clinical triallists in the UK, based on experiences derived in the conduct of a multicentre neonatal clinical trial under the conditions that now prevail. We conclude that the considerable skills and knowledge that are now required to be an effective Principal Investigator should be recognised and that application processes, including issuing honorary contracts, should be simplified and centralised

    TIPIT: A randomised controlled trial of thyroxine in preterm infants under 28 weeks' gestation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born at extreme prematurity (below 28 weeks' gestation) are at high risk of developmental disability. A major risk factor for disability is having a low level of thyroid hormone which is recognised to be a frequent phenomenon in these infants. At present it is unclear whether low levels of thyroid hormone are a cause of disability, or a consequence of concurrent adversity.</p> <p>Methods</p> <p>We propose an explanatory multi-centre double blind randomised controlled trial of thyroid hormone supplementation in babies born below 28 weeks' gestation. All infants will receive either levothyroxine or placebo until 32 weeks' corrected gestational age. The primary outcome will be brain growth. This will be assessed by the width of the sub-arachnoid space measured using cranial ultrasound and head circumference at 36 weeks' corrected gestational. The secondary outcomes will be (a) thyroid hormone concentrations measured at increasing postnatal age, (b) status of the hypothalamic pituitary axis, (c) auxological data between birth and 36 weeks' corrected gestational age, (d) thyroid gland volume, (e) volumes of brain structures (measured by magnetic resonance imaging), (f) determination of the extent of myelination and white matter integrity (measured by diffusion weighted MRI) and brain vessel morphology (measured by magnetic resonance angiography) at expected date of delivery and (g) markers of morbidity including duration of mechanical ventilation and chronic lung disease.</p> <p>We will also examine how activity of the hypothalamic-pituitary-adrenal axis modulates the effects of thyroid supplementation. This will contribute to decisions about which confounding variables to assess in large-scale studies.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN89493983</p

    An explanatory randomised placebo controlled trial of levothyroxine supplementation for babies born

    Get PDF
    BACKGROUND: Babies born before 28 weeks’ gestation have lower plasma thyroid hormone concentrations than more mature infants. This may contribute to their risk of poor developmental outcome. Previous studies have suggested that thyroxine supplementation for extremely preterm neonates may be beneficial. The aim of this study was to investigate the effect of administration of supplemental thyroxine to very premature babies on brain size and somatic growth at 36 weeks’ corrected gestational age (CGA). METHODS: In this explanatory multicentre double blind randomised placebo controlled trial, 153 infants born below 28 weeks’ gestation were randomised to levothyroxine (LT4) supplementation or placebo until 32 weeks’ CGA. The primary outcome was brain size assessed by the width of the subarachnoid space measured by cranial ultrasound at 36 weeks’ CGA. Lower leg length was measured by knemometry. RESULTS: Babies in the LT4-supplemented and placebo groups had similar baseline characteristics. There were no significant differences between infants given LT4 (n=78) or placebo (n=75) for width of the subarachnoid space, head circumference at 36 weeks’ CGA, body weight at 36 weeks’ CGA or mortality. Infants who received LT4 had significantly shorter leg lengths at 36 weeks’ CGA although adjusted analysis for baseline length did not find a statistical difference. There was a significant correlation between low FT4 and wider subarachnoid space. No unexpected serious adverse events were noted and incidence of adverse events did not differ between the two groups. CONCLUSION: This is the only randomised controlled trial of thyroxine supplementation targeting extremely premature infants. Supplementing all babies below 28 weeks’ gestation with LT4 had no apparent effect on brain size. These results do not support routine supplementation with LT4 for all babies born below 28 weeks’ gestation. TRIAL REGISTRATION: Current Controlled Trials ISRCTN89493983 EUDRACT number: 2005-003-0993

    Quellen und Literatur

    No full text

    Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront

    No full text
    corecore