38 research outputs found

    Haematozoa of wild catfishes in northern Australia

    Get PDF
    Very little is known about the diversity, prevalence, or pathogenicity of haematozoa in Australian freshwater fishes. Blood smears from 189 native catfishes, of six different species, from northern Australia were examined for haematozoa. Haematozoan infections were observed only in fishes from Queensland, at an overall prevalence of 0.191 (95% CI = 0.134–0.265). Intraerythrocytic haemogregarines were present in Neoarius graeffei from the Brisbane River at a prevalence of 0.35 (0.181–0.567). Trypanosomes were present in Tandanus species from four rivers, at prevalences ranging from 0.111 (0.020–0.330) to 1 (0.635–1), and in N. graeffei from one river in Queensland, at a prevalence of 0.063 (0.003–0.305). The haematozoans observed appeared to have little impact on their hosts. Tandanus spp. were significantly more likely to be infected with trypanosomes, suggesting a high parasite-host specificity. This is the first widespread survey of wild Australian freshwater catfishes for haematozoa, resulting in the first report of haemogregarines from Australian freshwater fish, and the first report of trypanosomes from Neoarius graeffei and Tandanus tropicanus

    Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy

    Get PDF
    Streptococcosis, particularly that caused by S. iniae and S. agalactiae, is a major re-emerging bacterial disease seriously affecting the global sustainability of aquaculture development. Despite a wide spread of the disease in aquaculture, few studies have been directed at assessing the in vitro antagonistic activity and in vivo efficacy of medicinal herbs and other plants against streptococcal agents. Most in vitro studies of plant extractives against S. iniae and S. agalactiae have found antibacterial activity, but essential oils, especially those containing eugenol, carvacrol or thymol, are more effective. Although essential oils have shown better anti-streptococcal activity in in vitro assays, in vivo bioassays require more attention. The extracts examined under in vivo conditions show moderate efficacy, increasing the survival rate of infected fish, probably through the enhancement of immunity before challenge bioassays. The available data, however, lack dosage optimization, toxicity and bioavailability assays of a specific plant or its bioactive compound in fish organs; hence, it is difficult to judge the validation of clinical efficacy for the prevention or treatment of fish streptococcosis. Despite the known bioactive compounds of many tested plants, few data are available on their mode of action towards streptococcal agents. This review addresses the efficacy of medicinal plants to fish streptococcosis and discusses the current gaps

    Genetic Diversity and Sequence Variations at Growth Hormone Loci among Composite and Hereford Populations of Beef Cattle

    No full text
    A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The aims of the study were to: Investigate polymorphisms in the growth hormone gene in the composite and purebred Hereford herds from the Wokalup selection experiment, compare genetic diversity in the growth hormone gene of the breeds, sequencing and compare the sequences of growth hormone loci between composite and purebred Hereford herds with published sequence from Genebank. The genomic DNA was extracted using Wizard genomic DNA purification system from Promega. Two fragments of growth hormone gene were amplified using PCR and continued with RFLP. Each genotype in both loci was sequenced. PCR products of each genotypes were cloned into PCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in both loci of GH-L1 and GH-L2 of the growth hormone gene by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data, polymorphism detected using AluI at GH-L1 is due to substitution between leusin/ valine at position 127, while polymorphism at the MspI restriction site was caused by transition of C to T at +837 position

    Conservation of parasites: A primer

    No full text
    Although parasites make up a substantial proportion of the biotic component of ecosystems, in terms of both biomass and number of species, they are rarely considered in conservation planning, except where they are thought to pose a threat to the conservation of their hosts. In this review, we address a number of unresolved questions concerning parasite conservation. Arguments for conserving parasite species refer to the intrinsic value conferred by their evolutionary heritage and potential, their functional role in the provision of ecosystem services, and their value as indicators of ecosystem quality. We propose that proper consideration of these arguments mean that it is not logically defensible to automatically exclude parasite species from conservation decisions; rather, endangered hosts and parasites should be considered together as a threatened ecological community. The extent to which parasites are threatened with extinction is difficult to estimate with any degree of confidence, because so many parasite species have yet to be identified and, even for those which have been formally described, we have limited information on the factors affecting their distribution and abundance. This lack of ecological information may partially explain the under-representation of parasites on threatened species lists. Effective conservation of parasites requires maintaining access to suitable hosts and the ecological conditions that permit successful transmission between hosts. When implementing recovery plans for threatened host species, this may be best achieved by attempting to restore the ecological conditions that maintain the host and its parasite fauna in dynamic equilibrium. Ecosystem-centred conservation may be a more effective strategy than species-centred (or host-parasite community-centred) approaches for preventing extinction of parasites, but the criteria which are typically used to identify protected areas do not provide information on the ecological conditions required for effective transmission. We propose a simple decision tree to aid the identification of appropriate conservation actions for threatened parasites

    Indicators of genetic variation for feed conversion efficiency in black bream

    No full text
    Feed conversion efficiency (FCE) is a composite measure that combines feed intake with growth rate to estimate the effectiveness by which feed is converted to saleable meat product, and is a major determinant of production system efficiency. We measured the relationships between feed intake to apparent satiety and weight gain in replicate half-sib families of black bream at four times over a 56-day test period. After 42 days, we found significant additive genetic variance in both weight gain and feed intake, and a stabilization in family group variation in both traits. This indicates that 42 days is the minimum test period over which to measure genetic variation for FCE in black bream. There were high, positive phenotypic (and probably genetic) correlations between weight gain and feed intake after 42 days. We found no detectable genetic variation for either feed efficiency (weight gain/feed intake), or residual feed intake, which is a linear function that distinguishes between the amount of feed intake that is used for body maintenance and that used for growth. We argue that selection for improved FCE might be better achieved not by using a composite measure, but by using a weighted selection index that accounts for the genetic covariance among weight gain, feed intake and other key production traits

    Genetic Structure of the Bovicola ovis

    No full text

    Is Toxoplasma gondii a threat to the conservation of free-ranging Australian marsupial populations?

    Get PDF
    It has often been asserted that Australian marsupial species are particularly susceptible to Toxoplasma gondii infection and to clinical toxoplasmosis following infection. This implicates T. gondii as a potential threat to marsupial population viability, and contrasts to what is known of T. gondii in populations of several other host species. We reviewed the literature, and found a lack of scientifically robust evidence addressing the occurrence of T. gondii infection in free-ranging populations of Australian marsupial species, and the impacts of the infection on population health. Key limitations included a lack of studies in free-ranging marsupial populations, study findings susceptible to substantial chance influences, and selection, misclassification and confounding biases. The lack of scientifically robust data available on this topic indicates that assertions that free-ranging populations of Australian marsupials are particularly susceptible to T. gondii infection and to toxoplasmosis are premature. The threat of T. gondii to the viability of free-ranging marsupial populations should therefore be regarded, at this stage, as a hypothesis
    corecore