15 research outputs found

    Application of Hygrothermal Analyses to Optimize

    No full text
    The design of exterior walls in a building envelope for optimum moisture management is a challenging task. Many conventional methods or local practice guidelines are available for this purpose, based primarily on regional traditions and with limited performance assessment records. In recent years, new wall systems and unconventional materials have been introduced in every part of North America for reasons such as aesthetic appeal, cost-effectiveness etc. However, neither the long-term moisture management performance of these new wall systems nor the uses of unconventional materials have been assessed rigorously. The primary reason for this lack of such assessment is the absence of a design-oriented technical routine to perform the task. Recent studies at the Institute for Research in Construction (IRC) / National Research Council (NRC) of Canada, show that such an assessment is possible with the use of an advanced hygrothermal modelling tool, such as hygIRC, developed in-house at IRC. This paper presents results from hygrothermal modelling and discussion on walls with the four different cladding systems: stucco, exterior insulated finish systems (EIFS), masonry and siding. These walls were virtually exposed to several North American climates. Their hygrothermal responses were assessed with a novel indicator, called the RHT index, which is derived from relative humidity and temperature. The results and discussion presented in this paper clearly show the need and usefulness of an integrated design methodology for the moisture management of exterior wall systems that can help to optimise various design considerations

    Final Report from Task 8 of MEWS Project (T8-03) - Hygrothermal Response of Exterior Wall Systems to Climate Loading: Methodology and Interpretation of Results for Stucco, EIFS, Masonry and Siding Clad Wood-Frame Walls

    No full text
    s"- for the purpose of investigating water entry rates into the stud cavity and the drying potential of the wall assemblies under different climate loads. Since the project was a first step in investigating a range of wall hygrothermal responses in a parametric analysis, no field study of building characteristics was performed to confirm inputs such as water entry rates and outputs such as wall response in a given climate. Rather, ranges from `no water entry and no response' to `too much water entry and too wet for too long' were investigated. Also, for the sake of convenience, the project used the generic cladding systems (e.g., stucco, masonry, EIFS, and wood and vinyl siding) for labeling and reporting the results on all wall assemblies examined in the study. However, when reading the MEWS publications, the reader must bear in mind that the reported results are more closely related to the nature of the deliberately introduced deficiencies (allowing wetting of the stud cavity) and
    corecore