7 research outputs found

    Unexpected removal of the most neutral cationic pharmaceutical in river waters

    Get PDF
    Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals

    Dissolved silver measurements in seawater

    No full text
    There is a paucity of data on dissolved silver in the world’s oceans and almost no data for European marine waters. The available data indicate that silver co-varies with silicate in oceanic environments, suggesting a link to biological processes. Nevertheless, silver is a highly toxic element. The main sources of silver for the marine environment derive from anthropogenic inputs, so silver can be used as a tracer for inputs of domestic and industrial pollution.Typical concentrations in seawater samples are very low (pmol/L). These low concentrations, combined with the complexity of the seawater-sample matrix, make the determination of silver in these samples extremely challenging. Developments in sensitive sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) instruments, combined with effective approaches for removal of the seawater matrix, have resulted in powerful analytical methods that can be used to overcome these challenges and help to improve our knowledge on the distribution, effect and fate of silver in the marine environment. This article briefly reviews the analytical techniques used for silver determination in seawater, and describes new trends in analyzing dissolved silver in seawater<br/

    Dissolved silver in European estuarine and coastal waters

    No full text
    Silver is one of the most toxic elements for the marine microbial and invertebrate community. However, little is known about the distribution and behaviour of dissolved silver in marine systems. This paper reports data on dissolved and sediment-associated silver in European estuaries and coastal waters which have been impacted to different extents by past and present anthropogenic inputs. This is the first extended dataset for dissolved silver in European marine waters. Lowest dissolved silver concentrations were observed in the Gullmar Fjord, Sweden (8.9 ± 2.9 pM; x ± 1?), the Tamar Estuary, UK (9.7 ± 6.2 pM), the Fal Estuary, UK (20.6 ± 8.3 pM), and the Adriatic Sea (21.2 ± 6.8 pM). Enhanced silver concentrations were observed in Atlantic coastal waters receiving untreated sewage effluent from the city of A Cor?na, Spain (243 ± 195 pM), and in the mine-impacted Restronguet Creek, UK (91 ± 71 pM). Anthropogenic wastewater inputs were a source of dissolved silver in the regions studied, with the exception of the Gullmar Fjord. Remobilisation of dissolved silver from historically contaminated sediments, resulting from acid mine drainage or sewage inputs, provided an additional source of dissolved silver to the estuaries. The ranges in the log particle-water partition coefficient (Kd) values of 5–6 were similar for the Tamar and Mero estuaries and agreed with reported values for other estuaries. These high Kd values indicate the particle reactive nature of silver with oxic sediments. In contrast, low Kd values (1.4–2.7) were observed in the Fal system, which may have been due to enhanced benthic inputs of dissolved silver coupled to limited scavenging of silver on to sediments rich in Fe oxide

    Analysis of dissolved metal fractions in coastal waters: An inter-comparison of five voltammetric in situ profiling (VIP) systems

    No full text
    This paper presents the results of an inter-comparison exercise undertaken to test the reliability and performance of a voltammetric in situ profiling system (VIP system) and carried out by partners based in Italy, Sweden, Switzerland and the UK. The VIP system was designed to allow in situ simultaneous monitoring of the dynamic fractions (i.e. the maximum potentially bioavailable fractions) of Cu(II), Pb(II) and Cd(II) in natural waters at a frequency of 2–3 analyses h? 1.The four participating groups used the VIP systems under laboratory conditions to determine dissolved concentrations of Cu, Pb and Cd in river, estuarine and coastal water reference materials (SLRS-3/4, SLEW-2/3 and CASS3/4, respectively). The accuracy of the VIP method was comparable to that of established methodologies, including inductively coupled plasma mass spectrometry and voltammetric methods using mercury-electrodes. The VIP systems were also applied to determine the dynamic fractions of the target analytes in freshly collected samples ex situ, as well as in situ in contrasting European marine waters. There was good agreement between the concentrations of the dynamic metal fractions determined in laboratory analyses, and observed during the simultaneous deployment of up to five VIP instruments for periods of several hours in coastal waters. The simultaneous in situ deployment of two VIP instruments in an estuary showed a consistent analytical performance over several days of continuous operation. The results of this inter-comparison exercise show that the VIP system is a reliable submersible probe for accurate, sensitive and high resolution in situ monitoring of dissolved metal fractions in the picomolar (Cd, Pb) and nanomolar (Cu) concentration ranges.<br/
    corecore