70 research outputs found

    In Vitro Interactions of Extracellular Histones with LDL Suggest a Potential Pro-Atherogenic Role

    Get PDF
    BACKGROUND: Nuclear histones have previously been shown to aggregate LDL in vitro, suggestive of a possible pro-atherogenic role. Recent studies indicate that histones are released during acute inflammation, and therefore might interact with circulating lipoproteins in vivo. In view of the associative link between inflammation and cardiovascular disease, the behaviour of histones was investigated using in vitro models of LDL retention and foam cell formation. METHODOLOGY/PRINCIPAL FINDINGS: Heparin agarose beads were used as a model of a matrix rich in sulphated glycosaminoglycans, to which histones bind strongly. Histone-modified beads were observed to pull down more LDL from solution than untreated beads, indicating that histones can function as bridging molecules, enhancing LDL retention. Furthermore, addition of heparin inhibited histone-induced aggregation of LDL. To model foam cell formation, murine RAW 264.7 macrophages were incubated for 24 h in the presence of LDL, histones, LDL plus histones or vehicle control. Cells incubated with LDL in the presence of histones accumulated significantly more intracellular lipid than with LDL or histone alone. CONCLUSIONS/SIGNIFICANCE: These results are consistent with a potential pro-atherogenic role for extracellular histones, which should be investigated further

    Expulsion of Trichuris muris is associated with increased expression of angiogenin 4 in the gut and increased acidity of mucins within the goblet cell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Trichuris muris </it>in the mouse is an invaluable model for infection of man with the gastrointestinal nematode <it>Trichuris trichiura</it>. Three <it>T. muris </it>isolates have been studied, the Edinburgh (E), the Japan (J) and the Sobreda (S) isolates. The S isolate survives to chronicity within the C57BL/6 host whereas E and J are expelled prior to reaching fecundity. How the S isolate survives so successfully in its host is unclear.</p> <p>Results</p> <p>Microarray analysis was used as a tool to identify genes whose expression could determine the differences in expulsion kinetics between the E and S <it>T. muris </it>isolates. Clear differences in gene expression profiles were evident as early as day 7 post-infection (p.i.). 43 probe sets associated with immune and defence responses were up-regulated in gut tissue from an E isolate-infected C57BL/6 mouse compared to tissue from an S isolate infection, including the message for the anti-microbial protein, angiogenin 4 (Ang4). This led to the identification of distinct differences in the goblet cell phenotype post-infection with the two isolates.</p> <p>Conclusion</p> <p>Differences in gene expression levels identified between the S and E-infected mice early during infection have furthered our knowledge of how the S isolate persists for longer than the E isolate in the C57BL/6 mouse. Potential new targets for manipulation in order to aid expulsion have been identified. Further we provide evidence for a potential new marker involving the acidity of the mucins within the goblet cell which may predict outcome of infection within days of parasite exposure.</p

    Expression of three intelectins in sheep and response to a Th2 environment

    Get PDF
    Sheep intelectin1 and sheep intelectin3 (sITLN1 and sITLN3) were cloned and sequenced. The amino acid sequences of sITLN1 and sITLN3 shared 86% and 91% homology with the previously cloned sheep intelectin2 (sITLN2), respectively. Expression of sITLN1 and sITLN3 transcript was demonstrated in abomasum, lung, colon and gastric lymph node, terminal rectum, skin, jejunum, mesenteric lymph node, ileal peyer’s patches, brain, kidney, liver, spleen, skin, ear pinna, heart and ovary in normal sheep tissues. sITLN2 transcript expression was restricted to the abomasal mucosa in normal sheep tissues. Using a non selective chicken anti-intelectin antibody, tissue intelectin protein was demonstrated in mucus neck cells in the abomasum, mucus cells in the colon, free mucus in ileum, goblet cells in the lung, small intestinal epithelium and brush border, epidermal layer of the skin and skin sebaceous glands. The expression of the three sITLN transcripts was examined in two nematode infections in sheep known to induce a Th2 response; a Teladorsagia circumcincta challenge infection model and a Dictyocaulus filaria natural infection. The three sITLN were absent in unchallenged naïve lambs and present in the abomasal mucosa of both naïve and immune lambs following T. circumcincta challenge infection. Upregulation of sITLN2 and sITLN3 was shown in sheep lung following D. filaria natural infection. Intelectins may play an important role in the mucosal response to nematode infections in ruminants

    The Goblet Cell Is the Cellular Source of the Anti-Microbial Angiogenin 4 in the Large Intestine Post Trichuris muris Infection

    Get PDF
    Mouse angiogenin 4 (Ang4) has previously been described as a Paneth cell-derived antimicrobial peptide important in epithelial host defence in the small intestine. However, a source for Ang4 in the large intestine, which is devoid of Paneth cells, has not been defined.Analysis was performed on Ang4 expression in colonic tissue by qPCR and immunohistochemistry following infection with the large intestine dwelling helminth parasite Trichuris muris. This demonstrated an increase in expression of the peptide following infection of resistant BALB/c mice. Further, histological analysis of colonic tissue revealed the cellular source of this Ang4 to be goblet cells. To elucidate the mechanism of Ang4 expression immunohistochemistry and qPCR for Ang4 was performed on colonic tissue from T. muris infected mouse mutants. Experiments comparing C3H/HeN and C3H/HeJ mice, which have a natural inactivating mutation of TLR4, revealed that Ang4 expression is TLR4 independent. Subsequent experiments with IL-13 and IL-4 receptor alpha deficient mice demonstrated that goblet cell expression of Ang4 is controlled either directly or indirectly by IL-13.The cellular source of mouse Ang4 in the colon following T. muris infection is the goblet cell and expression is under the control of IL-13

    Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection

    Get PDF
    Although the innate immune function of mast cells in the acute phase of parasitic and bacterial infections is well established, their participation in chronic immune responses to indolent infection remains incompletely understood. In parasitic infection with Trichinella spiralis, the immune response incorporates both lymphocyte and mast cell-dependent effector functions for pathogen eradication. Among the mechanistic insights still unresolved in the reaction to T. spiralis are the means by which mast cells respond to parasites and the mast cell effector functions that contribute to the immunologic response to this pathogen. We hypothesized that mast cell elaboration of tryptase may comprise an important effector component in this response. Indeed, we find that mice deficient in the tryptase mouse mast cell protease-6 (mMCP-6) display a significant difference in their response to T. spiralis larvae in chronically infected skeletal muscle tissue. Mechanistically, this is associated with a profound inability to recruit eosinophils to larvae in mMCP-6-deficient mice. Analysis of IgE-deficient mice demonstrates an identical defect in eosinophil recruitment. These findings establish that mast cell secretion of the tryptase mMCP-6, a function directed by the activity of the adaptive immune system, contributes to eosinophil recruitment to the site of larval infection, thereby comprising an integral link in the chronic immune response to parasitic infection

    Expression of Integrin-αE by Mucosal Mast Cells in the Intestinal Epithelium and Its Absence in Nematode-Infected Mice Lacking the Transforming Growth Factor-β1-Activating Integrin αvβ6

    Get PDF
    Peak intestinal mucosal mast cell (MMC) recruitment coincides with expulsion of Trichinella spiralis, at a time when the majority of the MMCs are located within the epithelium in BALB/c mice. Although expression of integrin-α(E)β(7) by MMCs has not been formally demonstrated, it has been proposed as a potential mechanism to account for the predominantly intraepithelial location of MMCs during nematode infection. Co-expression of integrin-α(E)β(7) and the MMC chymase mouse mast cell protease-1, by mouse bone marrow-derived mast cells, is strictly regulated by transforming growth factor (TGF)-β(1). However, TGF-β(1) is secreted as part of a latent complex in vivo and subsequent extracellular modification is required to render it biologically active. We now show, for the first time, that intraepithelial MMCs express integrin-α(E)β(7) in Trichinella-infected BALB/c and S129 mice. In S129 mice that lack the gene for the integrin-β(6) subunit and, as consequence, do not express the epithelial integrin-α(v)β(6), integrin-α(E) expression is virtually abolished and recruitment of MMCs into the intestinal epithelium is dramatically reduced despite significant overall augmentation of the MMC population. Because a major function of integrin-α(v)β(6) is to activate latent TGF-β(1,) these findings strongly support a role for TGF-β(1) in both the recruitment and differentiation of murine MMCs during nematode infection

    Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta

    Get PDF
    Infection of sheep with the gastric nematode Teladorsagia circumcincta results in distinct Th2-type changes in the mucosa, including mucous neck cell and mast cell hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and neutrophils, altered T-cell subsets and mucosal hypertrophy. To address the protective mechanisms generated in animals on previous exposure to this parasite, gene expression profiling was carried out using samples of abomasal mucosa collected pre- and post- challenge from animals of differing immune status, using an experimental model of T. circumcincta infection. Recently developed ovine cDNA arrays were used to compare the abomasal responses of sheep immunised by trickle infection with worm-naïve sheep, following a single oral challenge of 50 000 T. circumcincta L3. Key changes were validated using qRT-PCR techniques. Immune animals demonstrated highly significant increases in levels of transcripts normally associated with cytotoxicity such as granulysin and granzymes A, B and H, as well as mucous-cell derived transcripts, predominantly calcium-activated chloride channel 1 (CLCA1). Challenge infection also induced up-regulation of transcripts potentially involved in initiating or modulating the immune response, such as heat shock proteins, complement factors and the chemokine CCL2. In contrast, there was marked infection-associated down-regulation of gene expression of members of the gastric lysozyme family. The changes in gene expression levels described here may reflect roles in direct anti-parasitic effects, immuno-modulation or tissue repair. (Funding; DEFRA/SHEFC (VT0102) and the BBSRC (BB/E01867X/1))

    Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta

    Get PDF
    Infection of sheep with the gastric nematode Teladorsagia circumcincta results in distinct Th2-type changes in the mucosa, including mucous neck cell and mast cell hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and neutrophils, altered T-cell subsets and mucosal hypertrophy. To address the protective mechanisms generated in animals on previous exposure to this parasite, gene expression profiling was carried out using samples of abomasal mucosa collected pre- and post- challenge from animals of differing immune status, using an experimental model of T. circumcincta infection. Recently developed ovine cDNA arrays were used to compare the abomasal responses of sheep immunised by trickle infection with worm-naïve sheep, following a single oral challenge of 50 000 T. circumcincta L3. Key changes were validated using qRT-PCR techniques. Immune animals demonstrated highly significant increases in levels of transcripts normally associated with cytotoxicity such as granulysin and granzymes A, B and H, as well as mucous-cell derived transcripts, predominantly calcium-activated chloride channel 1 (CLCA1). Challenge infection also induced up-regulation of transcripts potentially involved in initiating or modulating the immune response, such as heat shock proteins, complement factors and the chemokine CCL2. In contrast, there was marked infection-associated down-regulation of gene expression of members of the gastric lysozyme family. The changes in gene expression levels described here may reflect roles in direct anti-parasitic effects, immuno-modulation or tissue repair. (Funding; DEFRA/SHEFC (VT0102) and the BBSRC (BB/E01867X/1))

    The crafting of an (un)enterprising community: context and the social practice of talk

    Get PDF
    YesThis article examines a ‘deprived’ UK community to identify how (dis)connections between context and enterprise are produced within accounts of a particular locality. We used a discursive psychological approach to examine how the community depicted itself as a context for enterprise. Our analysis identified three discursive repertoires mobilised by a range of voices in the community which combined to portray an unenterprising community and create a conceptual deadlock for enterprise. We suggest it is too deterministic to assume context is fixed and controls the potential for entrepreneurial development. Instead, we should consider social practices, including talk, that help construct the contexts in which entrepreneurship is expected to occur.The research resorted in this article was funded by an Economic and Social Research Council studentship
    corecore