297 research outputs found

    Identifying Recent Behavioral Data Length in Mobile Phone Log

    Full text link
    Mobile phone log data (e.g., phone call log) is not static as it is progressively added to day-by-day according to individ- ual's diverse behaviors with mobile phones. Since human behavior changes over time, the most recent pattern is more interesting and significant than older ones for predicting in- dividual's behavior. The goal of this poster paper is to iden- tify the recent behavioral data length dynamically from the entire phone log for recency-based behavior modeling. To the best of our knowledge, this is the first dynamic recent log-based study that takes into account individual's recent behavioral patterns for modeling their phone call behaviors.Comment: 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2017), Melbourne, Australi

    A Policy Framework for Subject-Driven Data Sharing

    Get PDF
    Organizations (e.g., hospitals, university etc.) are custodians of data on their clients and use this information to improve their service. Personal data of an individual therefore ends up hosted under the administration of different data custodians. Individuals (data subjects) may want to share their data with others for various reasons. However, existing data sharing mechanisms provided by the data custodians do not provide individuals enough flexibility to share their data, especially in a cross-domain (data custodian) environment. In this paper, we propose a data sharing policy language and related framework for a data subject to capture their fine-grained data sharing requirements. This proposed language allows the data subject to define data sharing policies that consider context conditions, privacy obligations and re-sharing restrictions. Furthermore, we have implemented a prototype to demonstrate how data subjects can define their data sharing policies and how the policies can be used and enforced at runtime

    Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway

    Get PDF
    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. We investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell wall integrity (CWI) response. Although the PR MAPK pathway shares components with a third MAPK pathway, the high osmolarity (HOG) response, each one is normally only activated by its cognate stimulus, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity-dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the "shmooing" morphogenetic process. Activation required the polarisome, the CWI MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover, which improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to fine-tune yeast response in a complex environment.Fil: Baltanas, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas . Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas . Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Couto, Alicia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Durrieu, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas . Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Hohmann, Stefan. University of Gothenburg. Department of Cell and Molecular Biology; SueciaFil: Colman Lerner, Alejandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas . Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Unexpected X Chromosome Skewing during Culture and Reprogramming of Human Somatic Cells Can Be Alleviated by Exogenous Telomerase

    Get PDF
    SummarySomatic tissues in female eutherian mammals are mosaic due to random X inactivation. In contrast to mice, X chromosome reactivation does not occur during the reprogramming of human female somatic cells to induced pluripotent stem cells (iPSCs), although this view is contested. Using balanced populations of female Rett patient and control fibroblasts, we confirm that all cells in iPSC colonies contain an inactive X, and additionally find that all colonies made from the same donor fibroblasts contain the same inactive X chromosome. Notably, this extreme “skewing” toward a particular dominant, active X is also a general feature of primary female fibroblasts during proliferation, and the skewing seen in reprogramming and fibroblast culture can be alleviated by overexpression of telomerase. These results have important implications for in vitro modeling of X-linked diseases and the interpretation of long-term culture studies in cancer and senescence using primary female fibroblast cell lines

    Cell-to-cell variability in the yeast pheromone response: Cytoplasmic microtubule function stabilizes signal generation and promotes accurate fate choice

    Get PDF
    In a companion paper, we carried out a high-throughput screen to identify genes that suppressed cell-to-cell variability in signaling in yeast. Two genes affected cytoplasmic microtubules that can connect the nucleus to a signaling site on the membrane. Here, we show that microtubule perturbations that affected polymerization and depolymerization, membrane attachment, and force generation increased variability. For some perturbations, "outlier" cells drove the increased variability. Bypass experiments that activated the PRS ectopically at downstream points indicated that microtubule-dependent processes might stabilize the membrane-recruited scaffold protein Ste5. The variability caused by microtubule perturbations required the MAP kinase Fus3. Microtubule perturbations hindered stable scaffold formation and decreased the accuracy of a polarity-dependent fate choice. Our experiments suggest that membrane-attached microtubules stabilize signaling by scaffold-bound Fus3, and are consistent with a model in which signaling irregularities from changes in microtubule function are amplified by cross-stimulatory feedbacks among PRS proteins. The fact that microtubule perturbations also cause aberrant fate and polarity decisions during embryonic development and cancer initiation suggests that similar variation-reducing processes might also operate in metazoans
    corecore