417 research outputs found

    Cystic Fibrosis James Lind Alliance Priority Setting Partnership PROTOCOL [5 February 2016]

    Get PDF
    The purpose of this protocol is to set out the aims, objectives and commitments of the Cystic Fibrosis Priority Setting Partnership (PSP) and the basic roles and responsibilities of the partners therein

    Cystic Fibrosis James Lind Alliance Priority Setting Partnership PROTOCOL [updated 13 July 2016]

    Get PDF
    The purpose of this protocol is to set out the aims, objectives and commitments of the Cystic Fibrosis Priority Setting Partnership (PSP) and the basic roles and responsibilities of the partners therein

    Test Characteristics of Urinary Lipoarabinomannan and Predictors of Mortality among Hospitalized HIV-Infected Tuberculosis Suspects in Tanzania.

    Get PDF
    Tuberculosis is the most common cause of death among patients with HIV infection living in tuberculosis endemic countries, but many cases are not diagnosed pre-mortem. We assessed the test characteristics of urinary lipoarabinomannan (LAM) and predictors of mortality among HIV-associated tuberculosis suspects in Tanzania. We prospectively enrolled hospitalized HIV-infected patients in Dar es Salaam, with ≥2 weeks of cough or fever, or weight loss. Subjects gave 2 mLs of urine to test for LAM using a commercially available ELISA, ≥2 sputum specimens for concentrated AFB smear and solid media culture, and 40 mLs of blood for culture. Among 212 evaluable subjects, 143 (68%) were female; mean age was 36 years; and the median CD4 count 86 cells/mm(3). 69 subjects (33%) had culture confirmation of tuberculosis and 65 (31%) were LAM positive. For 69 cases of sputum or blood culture-confirmed tuberculosis, LAM sensitivity was 65% and specificity 86% compared to 36% and 98% for sputum smear. LAM test characteristics were not different in patients with bacteremia but showed higher sensitivity and lower specificity with decreasing CD4 cell count. Two month mortality was 64 (53%) of 121 with outcomes available. In multivariate analysis there was significant association of mortality with absence of anti-retroviral therapy (p = 0.004) and a trend toward association with a positive urine LAM (p = 0.16). Among culture-negative patients mortality was 9 (75%) of 12 in LAM positive patients and 27 (38%) of 71 in LAM negative patients (p = 0.02). Urine LAM is more sensitive than sputum smear and has utility for the rapid diagnosis of culture-confirmed tuberculosis in this high-risk population. Mortality data raise the possibility that urine LAM may also be a marker for culture-negative tuberculosis

    Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials

    Get PDF
    In an attempt to bridge the gap between atomistic and continuum plasticity simulations of hydrogen in iron, we present three dimensional discrete dislocation plasticity simulations incorporating the hydrogen elastic stress and a hydrogen dependent dislocation mobility law. The hydrogen induced stress is incorporated following the formulation derived by Gu and El-Awady (2018) which here we extend to a finite boundary value problem, a microcantilever beam, via the superposition principle. The hydrogen dependent mobility law is based on first principle calculations by Katzarov et al. (2017) and was found to promote dislocation generation and enhance slip planarity at a bulk hydrogen concentration of 0.1 appm; which is typical for bcc materials. The hydrogen elastic stress produced the same behaviour, but only when the bulk concentration was extremely high. In a microcantilever, hydrogen was found to promote dislocation activity which lowered the flow stress and generated more pronounced slip steps on the free surfaces. These observations are consistent with the hydrogen enhanced localized plasticity (HELP) mechanism, and it is concluded that both the hydrogen elastic stress and hydrogen increased dislocation mobility are viable explanations for HELP. However it is the latter that dominates at the low concentrations typically found in bcc metals

    In situ measurement and modelling of the growth and length scale of twins in α-uranium

    Get PDF
    Twinning is an important deformation mechanism in crystalline materials. Twins nucleate, then grow, forming a discrete pattern of deformation bands with a certain thickness. The mechanism for twin growth is not completely understood. We present a simple phase field model which captures the physics of twin growth and reproduces the details observed during in situ electron backscatter diffraction experiments on α -uranium. The interaction between residual dislocations at twin interfaces and mobile dislocations in untwinned regions increases the stress needed for twin growth. This is described by a nonlocal term in the proposed constitutive equations: the nucleation stress of a twin increases proportionally to the twin phase field in a neighborhood. Competition between slip and twinning favors the nucleation of a new twin rather than the growth of a preexisting twin. The phase field model is coupled with a crystal plasticity finite element solver that includes the plastic deformation due to twinning. Simulations are able to reproduce the number of twins and their thicknesses as a function of the strain observed during in situ electron backscatter diffraction experiments. The stress-strain curve is also reproduced. This comparison allows the values of the nucleation stress and the interaction strength between residual and mobile dislocations to be found. It also gives an estimation of the density of residual dislocations that is consistent with the observed twin thickness. This model can be applied to understand microstructural effects in materials using twinning as a strengthening mechanism

    Influence of hydrogen core force shielding on dislocation junctions in iron

    Get PDF
    The influence of hydrogen on dislocation junctions has been analyzed by incorporating a hydrogen-dependent core force into nodal-based discrete dislocation plasticity simulations. Hydrogen reduces the core energy of dislocations, which reduces the magnitude of the dislocation core force. We refer to this as hydrogen core force shielding, as it is analogous to hydrogen elastic shielding but occurs at much lower hydrogen concentrations. The dislocation core energy change due to hydrogen was calibrated at the atomic scale, accounting for the nonlinear interatomic interactions at the dislocation core, giving the model a sound physical basis. Hydrogen was found to strengthen binary junctions and promote the nucleation of dislocations from triple junctions. Simulations of microcantilever bend tests showed hydrogen core force shielding reduced the yield stress followed by increased strain hardening due to junction strengthening. These simulations demonstrate hydrogen effects at a small bulk hydrogen concentration, 10 appm, realistic for body-centered cubic iron, allowing micromechanical tests on hydrogen charged samples to be simulated

    What Affects Social Attention? Social Presence, Eye Contact and Autistic Traits

    Get PDF
    Social understanding is facilitated by effectively attending to other people and the subtle social cues they generate. In order to more fully appreciate the nature of social attention and what drives people to attend to social aspects of the world, one must investigate the factors that influence social attention. This is especially important when attempting to create models of disordered social attention, e.g. a model of social attention in autism. Here we analysed participants' viewing behaviour during one-to-one social interactions with an experimenter. Interactions were conducted either live or via video (social presence manipulation). The participant was asked and then required to answer questions. Experimenter eye-contact was either direct or averted. Additionally, the influence of participant self-reported autistic traits was also investigated. We found that regardless of whether the interaction was conducted live or via a video, participants frequently looked at the experimenter's face, and they did this more often when being asked a question than when answering. Critical differences in social attention between the live and video interactions were also observed. Modifications of experimenter eye contact influenced participants' eye movements in the live interaction only; and increased autistic traits were associated with less looking at the experimenter for video interactions only. We conclude that analysing patterns of eye-movements in response to strictly controlled video stimuli and natural real-world stimuli furthers the field's understanding of the factors that influence social attention

    Correlation of adrenomedullin gene expression in peripheral blood leukocytes with severity of ischemic stroke

    Get PDF
    Human adrenomedullin (ADM), a 52-amino acid peptide, belongs to the calcitonin/calcitonin gene-related peptide (CGRP)/amylin peptide family. ADM acts as a multifunctional regulatory peptide and is upregulated in response to hypoxia. Previous microarray studies have found increased ADM gene (ADM) expression in peripheral blood cells of patients with stroke, however, it is unknown if an increased ADM level is correlated with severity of human ischemic stroke. This study investigated ADM expression in peripheral blood leukocytes (PBL) of healthy controls and subjects at day 1, week 1 and week 3 postacute ischemic stroke using rtPCR methodology. We found that ADM expression was significantly upregulated on the first day of stroke compared to the healthy subjects and the disease controls; the levels remained elevated for up to week 3. Further, ADM expression at day 1 was correlated with stroke severity measured by the National Institute of Healthy Stroke Scale (NIHSS), the modified Barthel Index (mBI) and the modified Rankin Scale (mRS). This could indicate that ADM expression level is related to the severity of tissue damage. We suggest that increased ADM expression in PBL after acute ischemic stroke is most likely to indicate that these cells have been subjected to hypoxia and that the magnitude of expression is likely to be related to the volume of hypoxic tissue. Hypoxia can affect lymphocytes function and could affect the immune response to stroke. The correlation of ADM expression level with the measures of stroke severity implicates ADM - a potential blood bio-marker in studies of ischemic stroke

    Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

    Get PDF
    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes
    corecore