74 research outputs found

    Telomerase Directed Gene Therapy

    Get PDF
    Stabilisation of telomere length is considered to be an essential step in cellular immortalisation in vitro and in human cancers. The telomerase ribonucleoprotein reverse transcriptase catalyses the addition of new telomeric repeat sequence to the ends of linear eukaryotic chromosomes and counteracts the cell division associated telomeric attrition that leads to cellular senescence. Its expression has been detected in approximately 85% of all human malignancies but is not detectable in the majority of normal somatic tissues and, therefore, telomerase represents an attractive target for the development of novel molecular therapeutics. Although telomerase activity is modulated on a number of levels, a primary level of regulation is the transcription of the telomerase sub-unit genes. In the present study, I describe the development of a transcriptionally directed cytotoxic gene therapy approach targeted against telomerase positive cancer cells. Transfection experiments using fragments of the human telomerase RNA component (hTERC) and the human telomerase reverse transcriptase (hTERT) promoters revealed large differences in promoter activity between mortal cells and cancer cells. The promoter fragments were sub-cloned into plasmids containing the coding sequence of nitroreductase (NTR), a bacterial enzyme that catalyses the chemical reduction of the non-toxic pro-drug CB1954 resulting in the formation of a powerful bi-functional alkylating agent that kills both dividing and nondividing cells. Stable cell lines harbouring hTERC-NTR and hTERT-NTR expression vectors were sensitised to CB1954 to an extent that was dependent on hTERC and hTERT promoter activity, with cell lines that had high promoter activities showing significant sensitisation, while those with low promoter activities were not significantly sensitised. The hTERC-NTR and hTERT-NTR expression constructs were cloned into adenovirus (Ad) delivery vehicles and the efficiencies of infection and expression of NTR were characterised in infected cell lines. The major RNA species that was expressed in infected cells was a splice variant that encoded a truncated NTR protein, but the function of NTR was not significantly impaired. Infection with the Ad-hTERC-NTR and Ad-hTERT-NTR gene therapy vectors resulted in a sensitisation to CB1954 that was dually dependent on promoter activity and infection efficiency. Two cancer cell lines that had high hTERC and hTERT promoter activities were significantly sensitised to CB1954, while a mortal foetal lung fibroblast cell strain and a normal adult human mammary epithelial strain, in addition to a bladder cancer cell line with low promoter activity, were not sensitised despite efficient infection with adenovirus. Therefore, the data presented herein support the further development of telomerase-nitroreductase expression vectors for anti-cancer gene therapy

    MDM2 negatively regulates the human telomerase RNA gene promoter

    Get PDF
    BACKGROUND: We have previously demonstrated that NF-Y and Sp1 interact with the human telomerase RNA (hTR) promoter and play a central role in its regulation. We have also shown that pRB activates the hTR promoter, but the mechanism of pRb directed activation is unknown. It has recently been reported that pRB induces Sp1 activity by relieving inhibition mediated by mdm2. The aim was to investigate possible roles for mdm2 in hTR promoter regulation. METHODS: Chromatin immunoprecipitation was used to determine binding of mdm2 to the hTR promoter. Transfection and luciferase assays were used to investigate mdm2 repression of the promoter activity and interaction with known transcriptional modulators. RESULTS: Here we show using chromatin immunoprecipitation that mdm2 specifically binds the hTR promoter in vivo. Transient co-transfection experiments using an hTR promoter luciferase reporter construct show that hTR promoter activity is inhibited by over-expression of mdm2 in 5637 bladder carcinoma cells (p53 and pRB negative, low mdm2). Titration of mdm2 was able to antagonise activation of hTR promoter activity mediated by pRB or Sp1 over-expression, although in the presence of pRB, mdm2 could not repress promoter activity below basal levels. Using an Sp1 binding site mutation construct we showed that mdm2 repression did not absolutely require Sp1 binding sites in the hTR promoter, suggesting the possibility of pRB/Sp1 independent mechanisms of repression. Finally, we show that NF-Y mediated transactivation of the hTR promoter was also suppressed by mdm2 in a dose-dependent manner. CONCLUSIONS: These studies suggest that mdm2 may inhibit the hTR promoter by multiple mechanisms. Mdm2 may directly repress activation by both pRB and Sp1, or activation by NF-Y. Furthermore, the ability of mdm2 to interact and interfere with components of the general transcription machinery might partly explain the general repressive effect seen here. Elucidation of new regulators affecting hTR basal promoter activity in cancer cells provides a basis for future studies aimed at improving our understanding of the differential hTR expression between normal and cancer cells

    FRP1 Expression is Inversely Associated With Metastasis Formation in Canine Mammary Tumours

    Get PDF
    Background Canine mammary tumours (CMTs) are the most frequent tumours in intact female dogs and show strong similarities with human breast cancer. In contrast to the human disease there are no standardised diagnostic or prognostic biomarkers available to guide treatment. We recently identified a prognostic 18-gene RNA signature that could stratify human breast cancer patients into groups with significantly different risk of distant metastasis formation. Here, we assessed whether expression patterns of these RNAs were also associated with canine tumour progression. Method A sequential forward feature selection process was performed on a previously published microarray dataset of 27 CMTs with and without lymph node (LN) metastases to identify RNAs with significantly differential expression to identify prognostic genes within the 18-gene signature. Using an independent set of 33 newly identified archival CMTs, we compared expression of the identified prognostic subset on RNA and protein basis using RT-qPCR and immunohistochemistry on FFPE-tissue sections. Results While the 18-gene signature as a whole did not have any prognostic power, a subset of three RNAs: Col13a1, Spock2, and Sfrp1, together completely separated CMTs with and without LN metastasis in the microarray set. However, in the new independent set assessed by RT-qPCR, only the Wnt-antagonist Sfrp1 showed significantly increased mRNA abundance in CMTs without LN metastases on its own (p = 0.013) in logistic regression analysis. This correlated with stronger SFRP1 protein staining intensity of the myoepithelium and/or stroma (p < 0.001). SFRP1 staining, as well as Ξ²-catenin membrane staining, was significantly associated with negative LN status (p = 0.010 and 0.014 respectively). However, SFRP1 did not correlate with Ξ²-catenin membrane staining (p = 0.14). Conclusion The study identified SFRP1 as a potential biomarker for metastasis formation in CMTs, but lack of SFRP1 was not associated with reduced membrane-localisation of Ξ²-catenin in CMTs

    Dynamic telomerase gene suppression via network effects of GSK3 inhibition

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression. &lt;b&gt;Methodology/Principal Findings&lt;/b&gt;: In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3β€²-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFΞΊB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc. &lt;b&gt;Conclusions/Significance&lt;/b&gt;: Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting

    Identification of a selective G1-phase benzimidazolone inhibitor by a senescence-targeted virtual screen using artificial neural networks

    Get PDF
    Cellular senescence is a barrier to tumorigenesis in normal cells and tumour cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. 147 virtual hits were acquired for validation in growth inhibition and senescence-associated Ξ²-galactosidase (SA-Ξ²-gal) assays. Among the found hits a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced SA-Ξ²-gal activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1 and CDC25C. Additionally, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long term treatments. Preliminary structure-activity and structure clustering analyses are reported and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor-like profile in normal cells, with different pathways affected in cancer cells

    SFRP1 expression is inversely associated with metastasis formation in canine mammary tumours

    Get PDF
    Background: Canine mammary tumours (CMTs) are the most frequent tumours in intact female dogs and show strong similarities with human breast cancer. In contrast to the human disease there are no standardised diagnostic or prognostic biomarkers available to guide treatment. We recently identified a prognostic 18-gene RNA signature that could stratify human breast cancer patients into groups with significantly different risk of distant metastasis formation. Here, we assessed whether expression patterns of these RNAs were also associated with canine tumour progression. Method: A sequential forward feature selection process was performed on a previously published microarray dataset of 27 CMTs with and without lymph node (LN) metastases to identify RNAs with significantly differential expression to identify prognostic genes within the 18-gene signature. Using an independent set of 33 newly identified archival CMTs, we compared expression of the identified prognostic subset on RNA and protein basis using RT-qPCR and immunohistochemistry on FFPE-tissue sections. Results: While the 18-gene signature as a whole did not have any prognostic power, a subset of three RNAs: Col13a1, Spock2, and Sfrp1, together completely separated CMTs with and without LN metastasis in the microarray set. However, in the new independent set assessed by RT-qPCR, only the Wnt-antagonist Sfrp1 showed significantly increased mRNA abundance in CMTs without LN metastases on its own (p = 0.013) in logistic regression analysis. This correlated with stronger SFRP1 protein staining intensity of the myoepithelium and/or stroma (p &lt; 0.001). SFRP1 staining, as well as Ξ²-catenin membrane staining, was significantly associated with negative LN status (p = 0.010 and 0.014 respectively). However, SFRP1 did not correlate with Ξ²-catenin membrane staining (p = 0.14). Conclusion: The study identified SFRP1 as a potential biomarker for metastasis formation in CMTs, but lack of SFRP1 was not associated with reduced membrane-localisation of Ξ²-catenin in CMTs

    Therapeutic Targeting of Replicative Immortality

    Get PDF
    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed β€œsenescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy

    A novel pyrazolopyrimidine ligand of human PGK1 and stress sensor DJ1 modulates the shelterin complex and telomere length regulation

    Get PDF
    Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure–activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series

    Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

    Get PDF
    Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3β€²-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
    • …
    corecore