263 research outputs found
Home range and habitat use by Kemp's Ridley turtles in West-Central Florida
The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on
the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley
turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to
1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging
ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a
significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used
live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar
studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences
in habitat use. which can then be used to conserve important foraging areas
Travelling waves in a drifting flux lattice
Starting from the time-dependent Ginzburg-Landau (TDGL) equations for a type
II superconductor, we derive the equations of motion for the displacement field
of a moving vortex lattice without inertia or pinning. We show that it is
linearly stable and, surprisingly, that it supports wavelike long-wavelength
excitations arising not from inertia or elasticity but from the
strain-dependent mobility of the moving lattice. It should be possible to image
these waves, whose speeds are a few \mu m/s, using fast scanning tunnelling
microscopy.Comment: 4 pages, revtex, 2 .eps figures imbedded in paper, title shortened,
minor textual change
Activity patterns of Kemp's ridley turtles, Lepidochelys kempii, in the coastal waters of the Cedar Keys, Florida
Radio and sonic telemetry were used to investigate
the tidal orientation, rate of movement
(ROM), and surfacing behavior of nine Kemp's ridley
turtles, Lepidochelys kempii, tracked east of the Cedar
Keys, Florida. The mean of mean turtle bearings on
incoming (48 ± 49 0) and falling (232 ± 41 0) tides was
significantly oriented to the mean directions of tidal flow
(37±9°, P<0.0025, and 234±9 0, P<0.005, respectively).
Turtles had a mean ROM of 0.44±0.33 km/h
(range: 0.004-1.758 km/h), a mean surface duration of
18± 15 s (range: 1-88 s), and a mean submergence duration
of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was
negatively correlated with surface and submergence
durations and positively correlated with the number of
surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day.
Daily activities of turtles were attributed to food acquisition
and bioenergetics
Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part III. Prevention and treatment of relapse after allogeneic transplantation
AbstractIn the Second Annual National Cancer Institute’s Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation, the Scientific/Educational Session on the Prevention and Treatment of Relapse after Allogeneic Transplantation highlighted progress in developing new therapeutic approaches since the first relapse workshop. Recent insights that might provide a basis for the development of novel, practical clinical trials were emphasized, including utilization of newer agents, optimization of donor lymphocyte infusion (DLI), and investigation of novel cellular therapies. Dr. de Lima discussed pre-emptive and maintenance strategies to prevent relapse after transplantation, for example, recent promising results suggestive of enhanced graft-versus-tumor activity with hypomethylating agents. Dr. Schmid provided an overview of adjunctive strategies to improve cell therapy for relapse, including cytoreduction before DLI, combination of targeted agents with DLI, and considerations in use of second transplantations. Dr. Porter addressed strategies to enhance T cell function, including ex vivo activated T cells and T cell engineering, and immunomodulatory approaches to enhance T cell function in vivo, including exogenous cytokines and modulation of costimulatory pathways
Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned
The complex resistivity of the vortex lattice in an
untwinned crystal of 93-K has been measured at frequencies
from 100 kHz to 20 MHz in a 2-Tesla field ,
using a 4-probe RF transmission technique that enables continuous measurements
versus and temperature . As is increased, the inductance increases steeply to a cusp
at the melting temperature , and then undergoes a steep collapse
consistent with vanishing of the shear modulus . We discuss in detail
the separation of the vortex-lattice inductance from the `volume' inductance,
and other skin-depth effects. To analyze the spectra, we consider a weakly
disordered lattice with a low pin density. Close fits are obtained to
over 2 decades in . Values of the pinning parameter
and shear modulus obtained show that collapses by
over 4 decades at , whereas remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres
Nucleation and Growth of the Superconducting Phase in the Presence of a Current
We study the localized stationary solutions of the one-dimensional
time-dependent Ginzburg-Landau equations in the presence of a current. These
threshold perturbations separate undercritical perturbations which return to
the normal phase from overcritical perturbations which lead to the
superconducting phase. Careful numerical work in the small-current limit shows
that the amplitude of these solutions is exponentially small in the current; we
provide an approximate analysis which captures this behavior. As the current is
increased toward the stall current J*, the width of these solutions diverges
resulting in widely separated normal-superconducting interfaces. We map out
numerically the dependence of J* on u (a parameter characterizing the material)
and use asymptotic analysis to derive the behaviors for large u (J* ~ u^-1/4)
and small u (J -> J_c, the critical deparing current), which agree with the
numerical work in these regimes. For currents other than J* the interface
moves, and in this case we study the interface velocity as a function of u and
J. We find that the velocities are bounded both as J -> 0 and as J -> J_c,
contrary to previous claims.Comment: 13 pages, 10 figures, Revte
Accurate model annotation of a near-atomic resolution cryo-EM map
Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo- EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly.With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.National Institutes of Health (U.S.) (Grant P41GM103832)National Institutes of Health (U.S.) (Grant R01GM079429)National Institutes of Health (U.S.) (Grant PN2EY016525)National Institutes of Health (U.S.) (Grant P01GM063210)Robert A. Welch Foundation (Grant Q1242
Cluster Hybrid Monte Carlo Simulation Algorithms
We show that addition of Metropolis single spin-flips to the Wolff cluster
flipping Monte Carlo procedure leads to a dramatic {\bf increase} in
performance for the spin-1/2 Ising model. We also show that adding Wolff
cluster flipping to the Metropolis or heat bath algorithms in systems where
just cluster flipping is not immediately obvious (such as the spin-3/2 Ising
model) can substantially {\bf reduce} the statistical errors of the
simulations. A further advantage of these methods is that systematic errors
introduced by the use of imperfect random number generation may be largely
healed by hybridizing single spin-flips with cluster flipping.Comment: 16 pages, 10 figure
Sample multiplexing-based targeted pathway proteomics with real-time analytics reveals the impact of genetic variation on protein expression.
Targeted proteomics enables hypothesis-driven research by measuring the cellular expression of protein cohorts related by function, disease, or class after perturbation. Here, we present a pathway-centric approach and an assay builder resource for targeting entire pathways of up to 200 proteins selected from \u3e10,000 expressed proteins to directly measure their abundances, exploiting sample multiplexing to increase throughput by 16-fold. The strategy, termed GoDig, requires only a single-shot LC-MS analysis, ~1 µg combined peptide material, a list of up to 200 proteins, and real-time analytics to trigger simultaneous quantification of up to 16 samples for hundreds of analytes. We apply GoDig to quantify the impact of genetic variation on protein expression in mice fed a high-fat diet. We create several GoDig assays to quantify the expression of multiple protein families (kinases, lipid metabolism- and lipid droplet-associated proteins) across 480 fully-genotyped Diversity Outbred mice, revealing protein quantitative trait loci and establishing potential linkages between specific proteins and lipid homeostasis
Impaired Autophagy of an Intracellular Pathogen Induced by a Crohn's Disease Associated ATG16L1 Variant
The genetic risk factors predisposing individuals to the development of inflammatory bowel disease are beginning to be deciphered by genome-wide association studies. Surprisingly, these new data point towards a critical role of autophagy in the pathogenesis of Crohn's disease. A single common coding variant in the autophagy protein ATG16L1 predisposes individuals to the development of Crohn's disease: while ATG16L1 encoding threonine at amino acid position 300 (ATG16L1*300T) confers protection, ATG16L1 encoding for alanine instead of threonine (ATG16L1*300A, also known as T300A) mediates risk towards the development of Crohn's disease. Here we report that, in human epithelial cells, the Crohn's disease-associated ATG16L1 coding variant shows impairment in the capture of internalized Salmonella within autophagosomes. Thus, we propose that the association of ATG16L1*300A with increased risk of Crohn's disease is due to impaired bacterial handling and lowered rates of bacterial capture by autophagy
- …