793 research outputs found
A Semi-automatic Search for Giant Radio Galaxy Candidates and their Radio-Optical Follow-up
We present results of a search for giant radio galaxies (GRGs) with a
projected largest linear size in excess of 1 Mpc. We designed a computational
algorithm to identify contiguous emission regions, large and elongated enough
to serve as GRG candidates, and applied it to the entire 1.4-GHz NRAO VLA Sky
survey (NVSS). In a subsequent visual inspection of 1000 such regions we
discovered 15 new GRGs, as well as many other candidate GRGs, some of them
previously reported, for which no redshift was known. Our follow-up
spectroscopy of 25 of the brighter hosts using two 2.1-m telescopes in Mexico,
and four fainter hosts with the 10.4-m Gran Telescopio Canarias (GTC), yielded
another 24 GRGs. We also obtained higher-resolution radio images with the Karl
G. Jansky Very Large Array for GRG candidates with inconclusive radio
structures in NVSS.Comment: 4 pages, 1 figure, to appear in the proceedings of The Universe of
Digital Sky Surveys, Naples, Italy, Nov 25-28, 2014; Astrophysics and Space
Science, eds. N.R. Napolitano et a
Diffusion of impurities in a granular gas
Diffusion of impurities in a granular gas undergoing homogeneous cooling
state is studied. The results are obtained by solving the Boltzmann--Lorentz
equation by means of the Chapman--Enskog method. In the first order in the
density gradient of impurities, the diffusion coefficient is determined as
the solution of a linear integral equation which is approximately solved by
making an expansion in Sonine polynomials. In this paper, we evaluate up to
the second order in the Sonine expansion and get explicit expressions for
in terms of the restitution coefficients for the impurity--gas and gas--gas
collisions as well as the ratios of mass and particle sizes. To check the
reliability of the Sonine polynomial solution, analytical results are compared
with those obtained from numerical solutions of the Boltzmann equation by means
of the direct simulation Monte Carlo (DSMC) method. In the simulations, the
diffusion coefficient is measured via the mean square displacement of
impurities. The comparison between theory and simulation shows in general an
excellent agreement, except for the cases in which the gas particles are much
heavier and/or much larger than impurities. In theses cases, the second Sonine
approximation to improves significantly the qualitative predictions made
from the first Sonine approximation. A discussion on the convergence of the
Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.
Campylobacter infection and household factors are associated with childhood growth in urban Bangladesh : an analysis of the MAL-ED study
The dual burden of enteric infection and childhood malnutrition continues to be a global health concern and a leading cause of morbidity and death among children. Campylobacter infection, in particular, is highly prevalent in low- and middle-income countries, including Bangladesh. We examined longitudinal data to evaluate the trajectories of change in child growth, and to identify associations with Campylobacter infection and household factors. The study analyzed data from 265 children participating in the MAL-ED Study in Mirpur, Bangladesh. We applied latent growth curve modelling to evaluate the trajectories of change in children’s height, as measured by length-for-age z-score (LAZ), from age 0–24 months. Asymptomatic and symptomatic Campylobacter infections were included as 3- and 6-month lagged time-varying covariates, while household risk factors were included as time-invariant covariates. Maternal height and birth order were positively associated with LAZ at birth. An inverse association was found between increasing age and LAZ. Campylobacter infection prevalence increased with age, with over 70% of children 18–24 months of age testing positive for infection. In the final model, Campylobacter infection in the preceding 3-month interval was negatively associated with LAZ at 12, 15, and 18 months of age; similarly, infection in the preceding 6-month interval was negatively associated with LAZ at 15, 18, and 21 months of age. Duration of antibiotic use and access to treated drinking water were negatively associated with Campylobacter infection, with the strength of the latter effect increasing with children’s age. Campylobacter infection had a significant negative effect on child’s growth and this effect was most powerful between 12 and 21 months. The treatment of drinking water and increased antibiotic use have a positive indirect effect on linear child growth trajectory, acting via their association with Campylobacter infection
Unstable particles in matter at a finite temperature: the rho and omega mesons
Unstable particles (such as the vector mesons) have an important role to play
in low mass dilepton production resulting from heavy ion collisions and this
has been a subject of several investigations. Yet subtleties, such as the
implications of the generalization of the Breit-Wigner formula for nonzero
temperature and density, e.g. the question of collisional broadening, the role
of Bose enhancement, etc., the possibility of the kinematic opening (or
closing) of decay channels due to environmental effects, the problem of double
counting through resonant and direct contributions, are often given
insufficient emphasis. The present study attempts to point out these features
using the rho and omega mesons as illustrative examples. The difference between
the two versions of the Vector Meson Dominance Model in the present context is
also presented. Effects of non-zero temperature and density, through vector
meson masses and decay widths, on dilepton spectra are studied, for
concreteness within the framework of a Walecka-type model, though most of the
basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie
Unified description of long-time tails and long-range correlation functions for sheared granular liquids
Unified description on the long-time tail of velocity autocorrelation
function and the long-range correlation for the equal-time spatial correlation
functions is developed based on the generalized fluctuating hydrodynamics. The
cross-over of the long-time tail from to is predicted
independent of the density, and the equal-time spatial density correlation
function and the equal-time spatial velocity correlation function respectively
satisfy and for large limit.Comment: 10 pages. to be published in Euro. Phys. J.
Answering a Basic Objection to Bang/Crunch Holography
The current cosmic acceleration does not imply that our Universe is basically
de Sitter-like: in the first part of this work we argue that, by introducing
matter into *anti-de Sitter* spacetime in a natural way, one may be able to
account for the acceleration just as well. However, this leads to a Big Crunch,
and the Euclidean versions of Bang/Crunch cosmologies have [apparently]
disconnected conformal boundaries. As Maldacena and Maoz have recently
stressed, this seems to contradict the holographic principle. In the second
part we argue that this "double boundary problem" is a matter not of geometry
but rather of how one chooses a conformal compactification: if one chooses to
compactify in an unorthodox way, then the appearance of disconnectedness can be
regarded as a *coordinate effect*. With the kind of matter we have introduced
here, namely a Euclidean axion, the underlying compact Euclidean manifold has
an unexpectedly non-trivial topology: it is in fact one of the 75 possible
underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic"
cosmology, JHEP versio
Long Distance Contribution to and Implications for and
We estimate the long distance (LD) contribution to the magnetic part of the
transition using the Vector Meson Dominance approximation
. We find that this contribution may be significantly
larger than the short distance (SD) contribution to and could
possibly saturate the present experimental upper bound on the decay rate, eV. For the decay , which is driven by as well, we obtain an upper bound on the branching ratio from . Barring the possibility that the Quantum Chromodynamics
coefficient be much smaller than 1, also implies the approximate relation .
This relation agrees quantitatively with a recent independent estimate of the
l.h.s. by Deshpande et al., confirming that the LD contributions to are small. We find that these amount to an increase of in
the magnitude of the transition amplitude, relative to the SD
contribution alone.Comment: 16 pages, LaTeX fil
LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector
We present a unified analysis of the two main production processes of vector
boson pairs at the LHC, VV-fusion and qqbar annihilation, in a minimal strongly
interacting electroweak symmetry breaking sector. Using a unitarized
electroweak chiral Lagrangian formalism and modeling the final V_L V_L strong
rescattering effects by a form factor, we describe qqbar annihilation processes
in terms of the two chiral parameters that govern elastic V_L V_L scattering.
Depending on the values of these two chiral parameters, the unitarized
amplitudes may present resonant enhancements in different angular
momentum-isospin channels. Scanning this two parameter space, we generate the
general resonance spectrum of a minimal strongly interacting electroweak
symmetry breaking sector and determine the regions that can be probed at the
LHC.Comment: Final version to appear in Phys. Rev. D, including a more detailed
exposition and a few more references. Conclusions and results unchanged. 14
pages, 5 figure
Signatures of Thermal Dilepton Radiation at RHIC
The properties of thermal dilepton production from heavy-ion collisions in
the RHIC energy regime are evaluated for invariant masses ranging from 0.5 to 3
GeV. Using an expanding thermal fireball to model the evolution through both
quark-gluon and hadronic phases various features of the spectra are addressed.
In the low-mass region, due to an expected large background, the focus is on
possible medium modifications of the narrow resonance structures from
and mesons, whereas in the intermediate-mass region the old idea of
identifying QGP radiation is reiterated including effects of chemical
under-saturation in the early stages of central Au+Au collisions.Comment: 17 pages ReVTeX including 16 figure
- …