31 research outputs found

    Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis

    Get PDF
    International audienceWe herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages

    An innovative light chamber for measuring photosynthesis by three-dimensional plant organs

    No full text
    Abstract Background: In plants, three-dimensional (3-D) organs such as inflorescences or fruits carry out photosynthesis and thus play a significant role in carbon assimilation and yield. However, this contribution has been poorly characterized because there is no reliable method for measuring photosynthesis by 3-D organs. One of the major challenges is ensuring the uniform irradiation of samples that are placed within a sealed chamber.[br/] Results: In this study, we developed an innovative chamber with homogeneous lighting that can be used to measure photosynthesis by large 3-D organs. It consisted of a 15-cm-long sealed transparent cylinder that was surrounded by a decagonal prismatic light source, made up of a mixture of red and blue LEDs. We characterized irradiance homogeneity within the chamber at a resolution level of 1 cm and 10°. Photosynthetic photon flux density (PPFD) along the central axis of the chamber could be set to any value between 100 and 1100 μmol m−2 s−1. The coefficient of variation for the irradiation values found throughout the chamber was 10% and that for the ratio of red-to-blue spectra was less than 1.5%. The temperature of the sample was regulated to stay within 1 °C of the target temperature, regardless of PPFD. We compared the performance of our device with that of a commercially available device employing unidirectional lighting. Specifically, we examined net photosynthesis in two sample types—wheat ears and grape clusters—at varying PPFD levels.[br/] Conclusions: The devices gave similar estimates of dark respiration, regardless of sample type or age. Conversely, net photosynthesis started to become asymptotic at lower irradiance levels in our device than in the conventional device because apparent quantum yield was three times higher. When examining the effects of irradiance heterogeneity, it was clear that biased estimates could result from systems employing unidirectional light sources. Our results also confirmed that our chamber could be a useful tool for obtaining more accurate estimates of photosynthesis by 3-D organs

    Retour sur l'Ecole Technique : Méthodes pour la création et la valorisation deprototypes

    No full text
    Retour sur l'Ecole Technique : Méthodes pour la création et la valorisation deprototypes. J2M 2018 - 15. Journées de la Mesure et de la Métrologi

    LightCue: An Innovative Far-Red Light Emitter for Locally Modifying the Spectral Cue in Outdoor Conditions with Global Consequences on Plant Architecture

    No full text
    Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field

    LightCue: An Innovative Far-Red Light Emitter for Locally Modifying the Spectral Cue in Outdoor Conditions with Global Consequences on Plant Architecture

    No full text
    Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field

    Daily fluctuations in leaf temperature modulate the development of a foliar pathogen

    No full text
    International audienceThermal ecology studies on the ecophysiological responses of organisms to temperature involve two paradigms: physiological rates are driven by body temperature and not directly by the environmental temperature, and they are largely influenced not only by its mean but also its variance. These paradigms together have been largely applied to macro invertebrates and vertebrates but rarely to microorganisms. According to these paradigms, foliar fungal pathogens are expected to respond directly to the fluctuations in leaf temperature, rather than in air temperature. We determined experimentally the impact of two patterns of leaf temperature variation of equal mean temperature, but differing in their daily amplitude, on the development of Zymoseptoria tritici, a fungus infecting wheat leaves. The highest daily thermal amplitude resulted in two detrimental effects for the pathogen fitness: an increase in the length of the latent period, i.e. the ‘generation time’ of the fungus when infecting its host plant, and a decrease in the density of fruiting bodies on the leaves. We discussed these empirical results, mainly the impact of both the daily thermal amplitude and the fluctuation frequency on the pathogen development in planta, in the light of the mathematical effect of the integration of non-linear functions. We concluded that it is necessary to take into account daily leaf temperature amplitudes to improve our understanding and prediction of the development of foliar fungal pathogens and other micro-organisms living in the phyllosphere in the climate change context
    corecore