17 research outputs found

    Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease

    Get PDF
    BACKGROUND: Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, anti-inflammatory, antioxidant, antimicrobial and memory-enhancer drug. This study was undertaken in order to evaluate the possible cognitive-enhancing and antioxidative effects of the aqueous extract of A. adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. METHODS: The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on spatial memory performance was assessed using Y-maze and radial arm-maze tasks, as animal models of spatial memory. Pergolide - induced rotational behavior test was employed to validate unilateral damage to dopamine nigrostriatal neurons. Also, in vitro antioxidant activity was assessed through the estimation of total flavonoid and total phenolic contents along with determination of free radical scavenging activity. Statistical analyses were performed using two-way analysis of variance (ANOVA). Significant differences were determined by Tukey’s post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson’s correlation coefficient and regression analysis were used in order to evaluate the association between behavioral parameters and net rotations in rotational behavior test. RESULTS: The 6-OHDA-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory errors and reference memory errors within radial arm maze task. Administration of the aqueous extract of A. adianthifolia leaves significantly improved these parameters, suggesting positive effects on spatial memory formation. Also, the aqueous extract of A. adianthifolia leaves showed potent in vitro antioxidant activity. Furthermore, in vivo evaluation, the aqueous extract of A. adianthifolia leaves attenuated the contralateral rotational asymmetry observed by pergolide challenge in 6-OHDA-treated rats. CONCLUSIONS: Taken together, our results suggest that the aqueous extract of A. adianthifolia leaves possesses antioxidant potential and might provide an opportunity for management neurological abnormalities in Parkinson’s disease conditions

    Endothelium/Nitric Oxide Mediates the Vasorelaxant and Antihypertensive Effects of the Aqueous Extract from the Stem Bark of Mammea africana

    Get PDF
    This study evaluates the vasorelaxant and antihypertensive effects of the aqueous extract from the stem bark of M. africana (AEMA). AEMA was tested in vitro on intact or endothelium-denuded rats’ aorta rings precontracted with KCl or norepinephrine in absence or in presence of L-NAME or glibenclamide. The effect of a single concentration (300 Όg/mL) of AEMA was also examined on the concentration-response curve of KCl. In vivo, the antihypertensive effects of AEMA (200 mg/kg/day) were evaluated in male Wistar rats treated with L-NAME (40 mg/kg/day) for 4 weeks. AEMA relaxed aorta rings precontracted with NE or KCl with respective EC50 values of 0.36 Όg/mL and 197.60 Όg/mL. The destruction of endothelium or pretreatment of aorta rings with L-NAME shifted the EC50 of AEMA from 0.36 Όg/mL to 40.65 Όg/mL and 20.20 Όg/mL, respectively. The vasorelaxant activity of M. africana was significantly inhibited in presence of glibenclamide. AEMA also significantly inhibited the concentration-response curve of KCl. Administered orally, AEMA induced acute and chronic antihypertensive effects and normalized renal NO level. These results show that the vasorelaxant activity of AEMA might be mediated by the activation of the NO-cGMP-ATP-dependent potassium channels pathway and might predominantly account for its antihypertensive effect

    Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia

    Get PDF
    Background: Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia . Methods: Tests were performed on well plates filled with a fixed parasitized erythrocytes volume. Compounds to be tested were then added in wells. After incubation, tritiated hypoxanthine is added and the plates were returned to the incubator. After thawing, the nucleic acids are collected. Inhibitory Concentration 50 (IC50) was determined by linear interpolation. Results: From Allanblackia floribunda , have been isolated and characterized 1,7-dihydroxyxanthone 1, macluraxanthone 4, morelloflavone 9, Volkensiflavone 10 and morelloflavone 7-O-glucoside 11; from Allanblackia monticola, \u3b1-mangosine 2, rubraxanthone 3, allaxanthone C 5, norcowanine 6 , tovophiline A 7, allaxanthone B 8 and from Allanblackia gabonensis , 1,7-dihydroxyxanthone 1. Six of them were evaluated for their antimalarial properties. The most active compound, macluraxanthone, presented a very interesting activity, with an IC50 of 0.36 and 0.27 \u3bcg/mL with the F32 and FcM29 strains respectively. Conclusion: This work confirms that species of Allanblackia genus are medicinally important plants containing many biologically active compounds that can be used effectively as antiplasmodial

    Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract

    Get PDF
    Introduction: There is emerging interest in medicinal plants in the biomedical field, due to their multitude of chemicals which show anti-inflammatory, antimicrobial, antiviral, or antitumoral potential. Research on medicinal plants has shown that nanotechnology could offer new solutions in the quality control, delivery aspects, or in sustaining herbal biological activities. This work reports on the preparation and characterization of silver nanoparticle-mediated Selaginella myosurus plant extract. Methods: Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction have been used to characterize the prepared silver nanoparticles. The synthetic stability was studied by varying concentrations and pH of reactants. Egg albumin denaturation and carrageenan-induced rat paw edema model were used to ascertain the anti-inflammation. Results: Ultraviolet-visible spectroscopy gave plasmon resonance ranging between 420 and 480 nm while Fourier transform infrared spectroscopy proved nano interface functionalized with organics. The powder X-ray diffraction pattern is in agreement with silver and silver chloride nanoparticles of crystallite size 33.7 nm and 44.2 nm for silver and silver chloride, respectively. Energy dispersive X-ray spectroscopy enables elemental characterization of the particles consisting of silver and silver chloride among main elements. Spherical silver grain of 58.81 nm average size has been depicted with high-resolution scanning electron microscopy and high-resolution transmission electron microscopy. Inhibitions of 99% and 60% were obtained in vitro and in vivo, respectively. Conclusion: The albumin denaturation and carrageenan-induced rat hind paw edema model to assess the anti-inflammatory potential of generated nanoparticles suggests that the silver nanoparticles may act as reducing/inhibiting agents on the release of acute inflammatory mediators. Hence, this work clearly demonstrated that silver nanoparticles mediated-Selaginella myosurus could be considered as a potential source for anti-inflammatory drugs

    Assessing the impact of neurosurgery and neuroanatomy simulation using 3D non-cadaveric models amongst selected African medical students

    Get PDF
    BackgroundLaboratory dissections are essential to acquire practical skills to perform neurosurgical procedures. Despite being traditionally done on cadavers, they are often unavailable and suffer from cultural barriers in the African context. Non-cadaveric UpSurgeOn neurosurgery models have been developed to bridge this barrier, providing an almost similar experience with the human body. This study aimed to assess the impact of the UpSurgeOn hands-on-touch non-cadaver model training amongst selected Cameroon medical students.MethodsAn anonymous 35-item questionnaire was distributed online using Google drive systems to medical students who attended UpSurgeOn's hands-on-touch non-cadaver model training course. These questions aimed to capture data on previous experience with neuroanatomy and neurosurgery practicals and the perception, attitudes, and impact of the UpSurgeOn neurosurgery tool.ResultsEighty-six students completed the survey. The mean age was 21.2 ± 1.868 years, 61.6% were males with 62.8% of respondents being medical students in preclinical years. Before the training, 29.4% had a fair knowledge of neuroanatomy. Textbooks and Youtube videos were the main sources of neuroanatomy and neurosurgery knowledge for more than half of the respondents. Up to 91.5% had no prior exposure to a neuroanatomy/neurosurgery cadaver laboratory dissection, and 22.6% and 17.6% had witnessed and performed at least one craniotomy before, respectively. There were 11.1%, 15.5%, and 31.3% of our respondents who had used a surgical microscope, a neurosurgical instrument, and the UpSurgeOn Neurosurgery tool before, respectively. The majority perceived the UpSurgeOn tool easy to use and felt they needed to learn just a few things before getting going with the box. Most thought of increasing the use of the UpSurgeOn Box and saw the need to be part of the training curriculum. Finally, the majority felt this tool helped to increase familiarity and acquire neurosurgical skills, and to develop the orientation skills needed during neurosurgical approaches.ConclusionUndergraduate exposure to traditional neurosurgery/neuroanatomy labs is limited in Cameroon. Neurosurgery/neuroanatomy practical skills are gained essentially using non-practical means. Most students found the UpSurgeOn tool user-friendly, saw the need to incorporate it as part of their training, and perceived it to be essential in getting acquainted with neurosurgical skills

    Endothelium/Nitric Oxide Mediates the Vasorelaxant and Antihypertensive Effects of the Aqueous Extract from the Stem Bark of Mammea africana Sabine (Guttiferae)

    No full text
    This study evaluates the vasorelaxant and antihypertensive effects of the aqueous extract from the stem bark of M. africana (AEMA). AEMA was tested in vitro on intact or endothelium-denuded rats&apos; aorta rings precontracted with KCl or norepinephrine in absence or in presence of L-NAME or glibenclamide. The effect of a single concentration (300 ÎŒg/mL) of AEMA was also examined on the concentration-response curve of KCl. In vivo, the antihypertensive effects of AEMA (200 mg/kg/day) were evaluated in male Wistar rats treated with L-NAME (40 mg/kg/day) for 4 weeks. AEMA relaxed aorta rings precontracted with NE or KCl with respective EC50 values of 0.36 ÎŒg/mL and 197.60 ÎŒg/mL. The destruction of endothelium or pretreatment of aorta rings with L-NAME shifted the EC50 of AEMA from 0.36 ÎŒg/mL to 40.65 ÎŒg/mL and 20.20 ÎŒg/mL, respectively. The vasorelaxant activity of M. africana was significantly inhibited in presence of glibenclamide. AEMA also significantly inhibited the concentrationresponse curve of KCl. Administered orally, AEMA induced acute and chronic antihypertensive effects and normalized renal NO level. These results show that the vasorelaxant activity of AEMA might be mediated by the activation of the NO-cGMP-ATPdependent potassium channels pathway and might predominantly account for its antihypertensive effect

    Acute and chronic antihypertensive effects of <it>Cinnamomum zeylanicum</it> stem bark methanol extract in L-NAME-induced hypertensive rats

    No full text
    Abstract Background Previous study showed that the aqueous extract of the stem bark of Cinnamomum zeylanicum possesses antihypertensive and vasodilatory properties. The present work investigates the acute and chronic antihypertensive effects of the methanol extract of Cinnamomum zeylanicum stem bark (MECZ) in L-NAME-induced hypertensive rats. Methods The acute antihypertensive effects of MECZ (5, 10 and 20 mg/kg) administered intravenously were evaluated in rats in which acute arterial hypertension has been induced by intravenous administration of L-NAME (20 mg/kg). For chronic antihypertensive effects, animals were treated with L-NAME (40 mg/kg/day) plus the vehicle or L-NAME (40 mg/kg/day) in combination with captopril (20 mg/kg/day) or MECZ (300 mg/kg/day) and compared with control group receiving only distilled water. All drugs were administered per os and at the end of the experiment that lasted for four consecutive weeks, blood pressure was measured by invasive method and blood samples were collected for the determination of the lipid profile. The heart and aorta were collected, weighed and used for both histological analysis and determination of NO tissue content. Results Acute intravenous administration of C. zeylanicum extract (5, 10 and 20 mg/kg) to L-NAME-induced hypertensive rats provoked a long-lasting decrease in blood pressure. Mean arterial blood pressure decreased by 12.5%, 26.6% and 30.6% at the doses of 5, 10 and 20 mg/kg, respectively. In chronic administration, MECZ and captopril significantly prevented the increase in blood pressure and organs’ weights, as well as tissue histological damages and were able to reverse the depletion in NO tissue’s concentration. The MECZ also significantly lower the plasma level of triglycerides (38.1%), total cholesterol (32.1%) and LDL-cholesterol (75.3%) while increasing that of HDL-cholesterol (58.4%) with a significant low atherogenic index (1.4 versus 5.3 for L-NAME group). Conclusion MECZ possesses antihypertensive and organ protective effects that may result from its ability to increase the production of the endogenous NO and/or to regulate dyslipidemia.</p

    Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia

    Get PDF
    International audienceBackground: Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia.Methods: Tests were performed on well plates filled with a fixed parasitized erythrocytes volume. Compounds to be tested were then added in wells. After incubation, tritiated hypoxanthine is added and the plates were returned to the incubator. After thawing, the nucleic acids are collected. Inhibitory Concentration 50 (IC50) was determined by linear interpolation.Results: From Allanblackia floribunda, have been isolated and characterized 1,7-dihydroxyxanthone 1, macluraxanthone 4, morelloflavone 9, Volkensiflavone 10 and morelloflavone 7-O-glucoside 11; from Allanblackia monticola, α-mangosine 2, rubraxanthone 3, allaxanthone C 5, norcowanine 6, tovophiline A 7, allaxanthone B 8 and from Allanblackia gabonensis, 1,7-dihydroxyxanthone 1. Six of them were evaluated for their antimalarial properties. The most active compound, macluraxanthone, presented a very interesting activity, with an IC50 of 0.36 and 0.27 ”g/mL with the F32 and FcM29 strains respectively.Conclusion: This work confirms that species of Allanblackia genus are medicinally important plants containing many biologically active compounds that can be used effectively as antiplasmodial

    Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity

    No full text
    Dongmo AB, Nkeng-Efouet PA, Devkota KP, et al. Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine. 2014;21(6):787-792.Tetra-acetylajugasterone C (TAAC) was found to be one of the naturally occurring compounds of the Cameroonian medicinal plant Vitex cienkowskii which is responsible for a vasorelaxant activity of an extract of this plant. The evaluation of the underlying mechanisms for the relaxing effect of TAAC was determined using aortic rings of rats and mice. TAAC produced a concentration-dependent relaxation in rat artery rings pre-contracted with 1 mu M noradrenaline (IC50: 8.40 mu M) or 60 mM KCl (IC50: 36.30 mu M). The nitric oxide synthase inhibitor L-NAME (100 mu M) and the soluble guanylate cyclase inhibitor ODQ (10 mu M) significantly attenuated the vasodilatory effect of TAAC. TAAC also exerted a relaxing effect in aorta of wild-type mice (cGKI(+/+); IC50=13.04 mu M) but a weaker effect in aorta of mice lacking cGMP-dependent protein kinase I (cGKI(-/-); IC50=36.12 mu M). The involvement of calcium channels was studied in rings pre-incubated in calcium-free buffer and primed with 1 mu M noradrenaline prior to addition of calcium to elicit contraction. TAAC (100 mu M) completely inhibited the resulting calcium-induced vasoconstriction. The same concentration of TAAC showed a stronger effect on the tonic than on the phasic component of noradrenaline-induced contraction. This study shows that TAAC, a newly detected constituent of Vitex cienkowskii contributes to the relaxing effect of an extract of the plant. The effect is partially mediated by the involvement of the NO/cGMP pathway of the smooth muscle but additionally inhibition of calcium influx into the cell may play a role. (C) 2014 Elsevier GmbH. All rights reserved

    Antihypertensive Effects of the Vitex cienkowskii (Verbenaceae) Stem-Bark Extract on L-NAME-Induced Hypertensive Rats

    No full text
    Vitex cienkowskii stem-bark is used in Cameroonian traditional medicine to treat cardiovascular diseases including hypertension. In previous studies, the methanol/methylene chloride stem-bark extract of Vitex cienkowskii (MMVC) showed a preventive activity in L-NAME-induced hypertension and improved blood pressure of spontaneously hypertensive rats. The present study investigated the curative effects in L-NAME-induced hypertensive rats (LNHR). Hypertension was induced in rats by oral administration of L-NAME (40 mg/kg/day) for 28 days. The animals were divided into 2 groups: one group of 5 rats receiving distilled water (10 ml/kg) and another 20 rats receiving L-NAME. At the end of 4 weeks of administration of L-NAME, the animals were divided into 4 groups of 5 rats each: one group of hypertensive rats receiving distilled water, another one receiving captopril (25 mg/kg), and two groups of hypertensive rats receiving MMVC at doses of 200 and 400 mg/kg, respectively. Body weight, food, and water intake were measured weekly. At the end of the treatment, blood pressure and heart rate were recorded by invasive method. Whole heart, left ventricle, kidneys, and liver were weighed. The effects of plant extract on lipid profile and oxidative stress markers, as well as markers of hepatic and renal functions were assessed spectrophotometrically according to well described protocols. Results show that L-NAME significantly increases the mean arterial blood pressure (MABP), atherogenic index, lipid profile, and creatinine and transaminase activities of normotensive rats. MMVC significantly reduced the blood pressure in LNHR. Body weight, food and water intake, left ventricular hypertrophy, antioxidant level, renal and hepatic markers, and lipid profile were improved by the treatment with MMVC. The curative effect of MMVC on L-NAME-induced hypertension is probably related to its antihypertensive, hypolipidemic, and antioxidant properties. These results confirmed the use of Vitex cienkowskii for the treatment of hypertension in traditional medicine
    corecore