56 research outputs found

    Identification and Characterization of Ethanol Responsive Genes in Acute Ethanol Behaviors in Caenorhabditis elegans

    Get PDF
    Alcohol abuse and dependence are complex disorders that are influenced by many genetic and environmental factors. Acute behavioral responses to ethanol have predictive value for determining an individual’s long-term susceptibility to alcohol abuse and dependence. These behavioral responses are strongly influenced by genetics. Here, we have explored the role of genetic influences on acute behavioral responses to ethanol using the nematode worm, Caenorhabditis elegans. First, we explored the role of ethanol metabolism in acute behavior responses to ethanol. Natural variation in human ethanol metabolism machinery is one of the most reported and reproducible associations found to alter drinking behavior. Ethanol metabolism is conserved across phyla and alteration in this pathway alters acute behavioral responses to ethanol in humans, mice, rats, and flies. We have extended these findings to the worm and have shown that loss of either alcohol dehydrogenase or aldehyde dehydrogenase results in an increase in sensitivity to the acute effects of ethanol. Second, we explored the influence of differences in basal and ethanol-induced gene expression in ethanol responsive behaviors. We identified a set of candidate genes using the basal gene expression differences in npr-1(ky13) mutant animals to enrich for genes involved in AFT. This analysis revealed ethanol changes to the expression of genes involved in a variety of biological processes including lipid metabolism. We focused on a gene involved in the metabolism of fatty acids, acs-2. acs-2 encodes an acyl-CoA synthetase that activates fatty acids for mitochondrial beta-oxidation. Animals carrying mutant acs-2 have significantly reduced AFT and we explored the role of genes in the mitochondria beta-oxidation pathway for alterations in ethanol responsive behaviors. We have shown that knockdown of ech-6, an enoyl-CoA hydratase, enhances the development of AFT. This work has uncovered a role for fatty acid utilization pathways in acute ethanol responses and we suggest that natural variation in these pathways in humans may impact the acute alcohol responses to alcohol that in turn influence susceptibility to alcohol abuse and dependence

    Dietary Regimens Modify Early Onset of Obesity in Mice Haploinsufficient for Rai1

    Get PDF
    Smith-Magenis syndrome is a complex genomic disorder in which a majority of individuals are obese by adolescence. While an interstitial deletion of chromosome 17p11.2 is the leading cause, mutation or deletion of the RAI1 gene alone results in most features of the disorder. Previous studies have shown that heterozygous knockout of Rai1 results in an obese phenotype in mice and that Smith-Magenis syndrome mouse models have a significantly reduced fecundity and an altered transmission pattern of the mutant Rai1 allele, complicating large, extended studies in these models. In this study, we show that breeding C57Bl/6J Rai1+/−mice with FVB/NJ to create F1 Rai1+/− offspring in a mixed genetic background ameliorates both fecundity and Rai1 allele transmission phenotypes. These findings suggest that the mixed background provides a more robust platform for breeding and larger phenotypic studies. We also characterized the effect of dietary intake on Rai1+/− mouse growth during adolescent and early adulthood developmental stages. Animals fed a high carbohydrate or a high fat diet gained weight at a significantly faster rate than their wild type littermates. Both high fat and high carbohydrate fed Rai1+/− mice also had an increase in body fat and altered fat distribution patterns. Interestingly, Rai1+/− mice fed different diets did not display altered fasting blood glucose levels. These results suggest that dietary regimens are extremely important for individuals with Smith- Magenis syndrome and that food high in fat and carbohydrates may exacerbate obesity outcomes

    Allergic to the Twentieth Century: Intentional Communities and Therapeutic Landscapes in The Village and Safe

    Get PDF
    The concept of therapeutic landscapes has been used to explore diverse spaces and places of healing or wellness, from hospitals to gardens, libraries to smoking areas. A central strand of this work considers rural and/or natural landscapes as affording particular healing experiences. In this paper, I draw on this lineage of work alongside research into the formation of intentional communities in rural settings and the body of writing on representations of rural landscapes and country life. The two representations I analyse are films: The Village (M. Night Shyamalan, 2004) and Safe (Todd Haynes, 1995). In the former, an apparent settler village in rural Pennsylvania is revealed, in the film’s denouement, as an intentional community built as a retreat from the violence of contemporary urban life, guarded by Elders and a shared mythology about border-policing creatures. In Safe, the health hazards of modern suburban living, which lead the central character to develop multiple chemical sensitivity (MCS), can only be escaped by a similar retreat to a wilderness commune in the American desert. In both films, the spaces of rural life are constructed as therapeutic landscapes through their nostalgic, anti-modern withdrawal, and their protective boundary keeping

    Project FIT: Rationale, design and baseline characteristics of a school- and community-based intervention to address physical activity and healthy eating among low-income elementary school children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes Project FIT, a collaboration between the public school system, local health systems, physicians, neighborhood associations, businesses, faith-based leaders, community agencies and university researchers to develop a multi-faceted approach to promote physical activity and healthy eating toward the general goal of preventing and reducing childhood obesity among children in Grand Rapids, MI, USA.</p> <p>Methods/design</p> <p>There are four overall components to Project FIT: school, community, social marketing, and school staff wellness - all that focus on: 1) increasing access to safe and affordable physical activity and nutrition education opportunities in the schools and surrounding neighborhoods; 2) improving the affordability and availability of nutritious food in the neighborhoods surrounding the schools; 3) improving the knowledge, self-efficacy, attitudes and behaviors regarding nutrition and physical activity among school staff, parents and students; 4) impacting the 'culture' of the schools and neighborhoods to incorporate healthful values; and 5) encouraging dialogue among all community partners to leverage existing programs and introduce new ones.</p> <p>Discussion</p> <p>At baseline, there was generally low physical activity (70% do not meet recommendation of 60 minutes per day), excessive screen time (75% do not meet recommendation of < 2 hours per day), and low intake of vegetables and whole grains and high intake of sugar-sweetened beverages, French fries and chips and desserts as well as a high prevalence of overweight and obesity (48.5% including 6% with severe obesity) among low income, primarily Hispanic and African American 3<sup>rd</sup>-5<sup>th </sup>grade children (n = 403).</p> <p>Trial registration</p> <p><b>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01385046">NCT01385046</a></b></p

    Children's very low food security is associated with increased dietary intakes in energy, fat, and added sugar among Mexican-origin children (6-11 y) in Texas border Colonias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Food insecurity among Mexican-origin and Hispanic households is a critical nutritional health issue of national importance. At the same time, nutrition-related health conditions, such as obesity and type 2 diabetes, are increasing in Mexican-origin youth. Risk factors for obesity and type 2 diabetes are more common in Mexican-origin children and include increased intakes of energy-dense and nutrient-poor foods. This study assessed the relationship between children's experience of food insecurity and nutrient intake from food and beverages among Mexican-origin children (age 6-11 y) who resided in Texas border <it>colonias</it>.</p> <p>Methods</p> <p>Baseline data from 50 Mexican-origin children were collected in the home by trained <it>promotora</it>-researchers. All survey (demographics and nine-item child food security measure) and 24-hour dietary recall data were collected in Spanish. Dietary data were collected in person on three occasions using a multiple-pass approach; nutrient intakes were calculated with NDS-R software. Separate multiple regression models were individually fitted for total energy, protein, dietary fiber, calcium, vitamin D, potassium, sodium, Vitamin C, and percentage of calories from fat and added sugars.</p> <p>Results</p> <p>Thirty-two children (64%) reported low or very low food security. Few children met the recommendations for calcium, dietary fiber, and sodium; and none for potassium or vitamin D. Weekend intake was lower than weekday for calcium, vitamin D, potassium, and vitamin C; and higher for percent of calories from fat. Three-day average dietary intakes of total calories, protein, and percent of calories from added sugars increased with declining food security status. Very low food security was associated with greater intakes of total energy, calcium, and percentage of calories from fat and added sugar.</p> <p>Conclusions</p> <p>This paper not only emphasizes the alarming rates of food insecurity for this Hispanic subgroup, but describes the associations for food insecurity and diet among this sample of Mexican-origin children. Child-reported food insecurity situations could serve as a screen for nutrition problems in children. Further, the National School Lunch and School Breakfast Programs, which play a major beneficial role in children's weekday intakes, may not be enough to keep pace with the nutritional needs of low and very low food secure Mexican-origin children.</p

    Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    No full text
    Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention

    High carbohydrate and high fat fed <i>Rai1</i><sup>+/−</sup> mice have altered body fat and fat distribution.

    No full text
    <p>(<b>A</b>). Wild type and <i>Rai1<sup>+/−</sup></i> mice fed normal chow did not have significantly different total body fat. Both high carbohydrate and high fat fed <i>Rai1<sup>+/−</sup></i> mice had significantly more body fat than high carbohydrate and high fat fed wild type mice. (<b>B</b>). <i>Rai1</i><sup>+/−</sup> mice on a high fat diet had significantly more subcutaneous and abdominal fat relative to high fat fed wild type mice. However high carbohydrate fed <i>Rai1</i><sup>+/−</sup> mice only displayed alterations to abdominal fat portions but not subcutaneous. Normal chow diet regimen did not alter the distribution of fat in either genotype. All data are plotted as means +/− SEM; ** <i>P</i><0.01; *** <i>P</i><0.001; † <i>P</i><0.05; †† <i>P</i><0.01. NC: WT n = 3, <i>Rai1<sup>+/−</sup></i> n = 3. HC: WT n = 2, <i>Rai1<sup>+/−</sup></i> n = 4. HF WT n = 3, <i>Rai1<sup>+/−</sup></i> n = 3.</p
    corecore