344 research outputs found

    Parallel pivoting combined with parallel reduction

    Get PDF
    Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds

    Multiprocessor sparse L/U decomposition with controlled fill-in

    Get PDF
    Generation of the maximal compatibles of pivot elements for a class of small sparse matrices is studied. The algorithm involves a binary tree search and has a complexity exponential in the order of the matrix. Different strategies for selection of a set of compatible pivots based on the Markowitz criterion are investigated. The competing issues of parallelism and fill-in generation are studied and results are provided. A technque for obtaining an ordered compatible set directly from the ordered incompatible table is given. This technique generates a set of compatible pivots with the property of generating few fills. A new hueristic algorithm is then proposed that combines the idea of an ordered compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. Finally, an elimination set to reduce the matrix is selected. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices are presented and analyzed

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    Heavily reddened type 1 quasars at z > 2 I: Evidence for significant obscured black-hole growth at the highest quasar luminosities

    Full text link
    We present a new population of z>2 dust-reddened, Type 1 quasars with 0.5<E(B-V)<1.5, selected using near infra-red (NIR) imaging data from the UKIDSS-LAS, ESO-VHS and WISE surveys. NIR spectra obtained using the Very Large Telescope (VLT) for 24 new objects bring our total sample of spectroscopically confirmed hyperluminous (>10^{13}L_0), high-redshift dusty quasars to 38. There is no evidence for reddened quasars having significantly different Hα\alpha equivalent widths relative to unobscured quasars. The average black-hole masses (~10^9-10^10 M_0) and bolometric luminosities (~10^{47} erg/s) are comparable to the most luminous unobscured quasars at the same redshift, but with a tail extending to very high luminosities of ~10^{48} erg/s. Sixty-six per cent of the reddened quasars are detected at >3σ>3\sigma at 22um by WISE. The average 6um rest-frame luminosity is log10(L6um/erg/s)=47.1+/-0.4, making the objects among the mid-infrared brightest AGN currently known. The extinction-corrected space-density estimate now extends over three magnitudes (-30 < M_i < -27) and demonstrates that the reddened quasar luminosity function is significantly flatter than that of the unobscured quasar population at z=2-3. At the brightest magnitudes, M_i < -29, the space density of our dust-reddened population exceeds that of unobscured quasars. A model where the probability that a quasar becomes dust-reddened increases at high luminosity is consistent with the observations and such a dependence could be explained by an increase in luminosity and extinction during AGN-fuelling phases. The properties of our obscured Type 1 quasars are distinct from the heavily obscured, Compton-thick AGN that have been identified at much fainter luminosities and we conclude that they likely correspond to a brief evolutionary phase in massive galaxy formation.Comment: 16 pages, 9 figures (+ 2 appendices), Accepted for publication in MNRA
    corecore