
c

NASA Contractor R c p t 178422

ICASE REPORT NO. 87-75

ICASE
PARALLEL PIVOTING COMBINED WITH

PARALLEL REDUCTION

G I ta Alaghband

fNASA-CR-178422) PARALLEL PIVOTIUG C G U l Y B D ma-14662
WITH PARALLEL REDUCTION Final Report

41 P u n c l a s

W A S A)
CSCL U9B

G3/61 0118199
wnEraCt8 NO. NAS1-17070 and NASI-18107 '
D e c e m b e r 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIBMCE MID ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Assoclatim

. . ,
i. r . i .: ,

https://ntrs.nasa.gov/search.jsp?R=19880005280 2020-03-20T09:08:55+00:00Z

Parallel Pivoting Combined with Parallel Reduction

and Fill-in Control

Gita Alaghband

University of Colorado at Denver,
Department of Electrical Engineering and Computer Science
1100 14th Street (Campus Box 104)
Denver, Colorado 80202-

Parallel algorithms for triaogularization 01 large, sparse, and unsymmetric

matrices are presented. The method combines the parallel reduction wi th a new

parallel pivoting technique, control over generation of fill-ins and check for numer-

ical stability, all done in parallel with the work being distributed over the active

processes. The parallel pivoting technique uses the compatibility relation between

pivots to identify parallel pivot candidates and uses the Markowitz number of

pivots to minimize fill-in. This technique is not a preordering of the sparse matrix

and is applied dynamically as the decomposition proceeds.

Research was sPpportcd by the National Aeronautics and Space AdminisaatiOn under NASA
Contracts No. NAS1-17070 and NAS1-18107 and by the Air Foxce Office of Scientific
Research under Cantnct APOSR 85-0189 while the ubor was in residence at the Institute for
Computer Applicatiau in Science and Engindng (ICASE), NASA Langley Research Center,
Hampton, VA 23665.

1. Introduction In this paper we present multiprocessor algorithms for solving

large systems of linear equations where the coefficient matrix is sparse and unsym-

metric. VLSI circuit simulation, structural analysis, partial differential equations,

and chemical analysis are few examples of applications requiring the solution of

such systems of equations.

The algorithms described in the paper are designed for a shared-memory,

MIMD model for parallel computation, in which the total memory address space is

accessible uniformly to all parallel units. This computational model provides syn-

c hronization mechanisms to allow multiple updates. If multiple updates are aimed

a t the same memory cell, the penalty paid is a short delay in access time.

Given is a system of linear equations:

A z = b (1 . 1)
where the coefficient matrix, A , is large and sparse. This paper concentrates on a

direct parallel solution method for solving (1 . 1) by factoring A into lower (L) and

upper (U) triangular matrices respectively.

A = LU (1.2)
The solution is then obtained by forward and back substitution steps:

Ly = b (1.3)

uz - y (1.4)
To solve (l . l) , a sparse matrix technique based on the following principles is used:

a) Only the non-zero elements of A are stored.

2

b)

c)

Arithmetic operatiow arc. pcrfot:i!ed on non-zero elements only.

During the decompopitiou fill-ius are generated, i.e. new nowzero e!emeuts

3re created i n thr pmxss of g e n e r d n g zeros below the diagonai. The

number of fill-ins i s kept small.

The three problems qt:itc.d above are all related. Even though only non-

zeros need to be stored, f i l l - ius m u s t he stored in the matrix structure. Therefore,

minimization of fill-iu wil l result in minimization of the arithmetic operations and

storage as well. One must find a permutation of the sparse matrix A to satisfy the

above goal. The problem of fincling an optimum permutation to minimize fill-in is

NP-complete [l] . and many heuristic algorithms have been developed t o obtain

near optimal solutions for th i s problem. Most of these heuristics find optimum

permutations of the matrix which minimize fill-in in sequential solution process

while they often minimize the amount of possible parallel work in parallel process.

Therefore an ordering, or pivoting strategy to minimize some combination of fill-in

and parallel execution time m u s t be determined. The design of a heuristic alga-

rithm which identifies a set of pivots to be processed in parallel while minimizing

fill-ins is described in detail in [2], [3], and [4]. Other parallel pivoting strategies

have also been suggested [SI, IS], [7], [8], [SI, [lo], [l l] , [12], (131. In this paper we

concentrate on parallel implementation of sparse LU decomposition procedure

using the parallel pivoting technique described in 121, [3], and [4]. In this imple-

mentation pivots are tested for numerical stability as well as for sparsity.

A brief description of the parallel pivoting algorithm is given in section 2.

Section 3 describes the storage structure used in the implementation. In section 4

the various parallel procedures to perform steps of triangularization are described

and analyzed. In section 5 we represent actual performance results from the

parallel implementation of the sparse LU decomposition on the HEP computer.

3

Finally, in section 6 some concluding remarks :we presenter!.

2. Parallel Pivo t ing Algorithm The Triangulation of an n X tt ma!.iix

A - [a,,] can be described By the following procedure.

for K = I ,?, ..., n- 1 and for each a,k#O

O j k - j > k
O t k

(2.1)

For each pair a,k.kj # 0

- Oik ' k j i > k , j > k (2 .2)
In (2.2) if o,,=O but a,k*atl f O , a fill-in is generated. I t is obvious that if we have

sufficient processors, the divide operations (2.1) for each column K can be done in

parallel. Also, for each k the update operation (2.2) for all pairs 0 , k ' O k j f O can be

done in parallel. Our experience in employing this approach has indicated that

the sparsity of application matrices leaves parallel processes w i t h little work to

perform i f only reduction for a single pivot is done in parallel [14]. During Sparse

LI; decomposition it is possible to perform computation on many diagonal ele-

ments simultaneously. In parallel LU decomposition of general unsymmetric

sparse matrices several key issues m u s t be considered:

a) Parallelism and fill-in are two competing issues and a balance between the

two must be obtained. In other words minimizing fill-ins results in limited

parallelism, and maximizing parallelism results in uncontrolled generation of

fill-ins.

b) A test for numerical stability of pivots must be made to ensure the accuracy

of the solution process.

c) In applications where the sparse linear system must be solved repeatedly, i t

must be possible to decompose structurally identical matrices using the

4

information produced for !.be Grst decomposition of such matrix.

d) A storage structure snicabie Tor parallel processing must be determined.

A heuristic algorithm has been designed in [2], [3], [4] which identifies parallel

pivot candidates and allows the matrix to be reduced for multiple pivots simul-

taneously while it minimizes fill-ins. It is a dynamic algorithm which can be

:Ipplied a t any point i n t h e decomposition phase and does not require a preorder-

ing of the input matrix. It allows pivots to be tested for numerical stability.

Therefore a t any point during the reduction, if numerically unstable pivots are

encountered, unsymmetric permutations can be performed. The algorithm can

then be applied to the remaining unreduced submatrix. This technique also allows

structurally identical matrices to be decomposed using the information generated

during the decomposition of the first matrix. In subsequent decompositions a test

for numerical stability should be made. If the test is not satisfied, an off-diagonal

permutation can be made and the parallel pivoting algorithm can be applied anew

to the unreduced matrix only.

Here we wi l l concentrate on parallel implementation of this algorithm and

will not go into a detailed description of its design. A complete and detailed

description and analysis is available in [2], (31, [4]. In what follows a brief descrip-

tion of the algorithm and the required steps is given. The procedure to implement

each step is presented in detail in section 4.

Pivots that can be processed in parallel are related by a compatibility

relation and are grouped in a compatible. In other words pivots f,,, f,,, fu are

compatible and can be processed in parallel if and only if elements

ai,, aji, ad, ak,, (l i t , ak; are all zero. The collection of all maximal compatibles

[15], [16] yields different maximum sized sets of pivots that can be processed in

parallel. Several methods for generating maximal compatibles exist and they are

5

all based on the constructiou of an inplicntion (incompatible) table. The incom-

patible table gives information i h u t pr.irs of incompatible pivots. Produetior of

all maximal compatibles iar-oive! siLinnry tree search and is exponectial in thc

order of the, mat,ri.u. This problem is solvcd by a technique which generates an

"ordered incompal ible table" haset1 on the Markowitz number [l;] of the pivot. can-

didates.

The Markowitz crittriou i s a heuristic for minimizing fill-ins in sparse

matrices in sequential programming. It is based on the fact that a t each step k,

the maximum number of Ell-ins generated by choosing alj as pivot is

(r l - l)(c,- l) , where (r l - 1) and (r , - 1) are the number of nonzeros other than alj

in row i and column i of the reduced matrix. Markowitz selects as pivot element

at step k, the element which minimizes (II- l)(c,- l) , which is called the Mar-

kowitz number of element aij.

An "ordered Compatible" can then be produced directly from the

ordered incompatible table without the need to search the tree. The resulting set

of compatible pivots has the property of generating few fills. The heuristic algo-

rithm combines the idea of an ordered compatible with a limited binary tree

search to generate several sets of compatible pivots in linear time. An

e l i m i n a t i o n set to reduce the matrix is generated and selected on the basis of a

minimum Markowitz sum number (sum of the Markowitz number of pivots in a

compatible). Several parameters are introduced to trade off parallelism for fill-in

which can be controlled by the program. In summary the algorithm requires the

following steps:

1. An incompatible table i s constructed by scanning the sparse matrix.

2. Pivots are ordered according to their Markowitz numbers.

6

3. A limitcd binary tree search produces several starting ~ a t s at a given

level (I;LEVEI,) o f tbe tree.

4. .An ordered ronrpatible is generated for each sti?rtiug set at ‘JLLL’EL

from the corresponding ordered incompatible table.

5 . The ordered ronrpatible of maximum size and minimum Markowitz sum

i s selected as the elimination set to reduce the matrix.

6. A set of program parameters can be applied to the resulting

elimination set to furt,her minimize fill-in.

3. Storage Structure The basic global data structure used in the parallel LU

decomposition program is described below. Each element of the matrix structure

consists of five fields: the real numerical value, the row index, the column index, a

pointer to the next element in the row, and a pointer to the next element in the

column. The incompatible table is represented by an array of dimension n , order

of the matrix, with elements of the array imptbl being sets of n elements each.

Each set corresponds to a column of the table. Column i of the table, irnptbli,

holds the incompatible information for pivot i of the matrix. Note that the paral-

lel pivoting algorithm considers only the diagonal elements as pivot candidates.

Unsymmetric permutations are possible in between parallel pivoting steps.

cornpsi holds the resulting elimination se t .
- .

Type Definition:
ptr= rnotpac;
matpac * record

pointer ~ y p e to 3 matrix element.

wal : real; red value.
row : integer; row index.
column : integer; column index.
ne : ptr; pointer to next element in row.
nr : ptr; pointer to next element in column.

end;
roef=(r,c); row aod column list.
sefs=set of l . .n ; set t j p e

Variables:
A : array(rocl , l . .n)o/ p t r ; matrix structure.
no/r,nojc: array(l . .n)o / integer; number of nonteros

imptbl: array(l . .n)oj sets ;
compst: sets; elimination set.

in row and column.
incompatible table.

4. Parallel LU Decomposition In order to write efficient parallel programs

one mus t consider the underlying parallel architecture to which the program is t o

be applied. In an MIMD environment parallelism must be applied a t the highest

possible level in the program in order to effectively exploit the underlying parallel

hardware. In our design and implementation we have used the idea of universal

parallelism due to Jordan (181, [IS] which is based on writing parallel programs

assuming that all the parallelism needed by the programmer exists throughout the

program execution. A set of parallel programming constructs known as "the

Force" implemented for several shared-memory MIMD computers [181, [IS] are

used in the implementation of the algorithms presented in this paper.

A high level block diagram of the program is given below. The entire

LU Dceompor~tion program is executed by NPROC processes. These processes

can be created by a driver routine. The parallel routines are specified by a Forcc-

call followed by a brief description of their function on each box. Therefore the

body of each Force subroutine is executed by NPROC processes in parallel. After

8

the program is completely exerlited, the parallel procesaes are joined in the driver.

The flowchart consists of two major loops, parallel pivoting loop and sin-

gle pivoting loop. The parallel pivoting loop is executed as long as the program

can find compatibles of more than one pivot, otherwise the single pivoting loop is

executed. During parallel pivoting steps only diagonal elements are considered as

pivots and unsymmetric permutations are not permitted. In single pivoting steps

unsymmetric permutations are allowed and hence any matrix element can be con-

sidered 3s pivot.

In the remainder of this section we describe the parallel algorithms involved in the

LU Decompoai t ion program by stepping through the flowchart in the given order.

4.1. Parallel Sort A sorting routine is required to sort the pivots in decreasing

order of Markowitz number. The ordered list of pivots is used a t several points in

the parallel pivoting algorithm: in the construction of an

ordered incompatible table , in the construction of a partial binary tree search, and

finally it is used to trade off parallelism for fill-in by discarding a fraction of com-

patible pivots with Markowitz number higher than a given threshold value in the

ordered list.

The sorting algorithm used for this purpose is the Batcher sort [20], [21].

Batcher's sorting scheme is somewhat like Shell's sort but, the comparisons are

made in a novel way so that no propagation of exchanges is necessary. The

amount of bookkeeping needed to control the sequence of comparisons is rather

large. All comparisons/exchanges specified by a given iteration can be done simul-

taneously. In the procedure below processes are prescheduled over a range of

indices and they perform the comparison/exchange operations in parallel. As can

be seen from the algorithm a t each iteration we must compute the range of

,

d
I ni t i:r I i 7~

I>nr: icr
P:lrpv== true
E n d Bnrrirr

I /

.)
F’nrrllrl pivot.ing loop - N

SiiigIr pivoting loop Pnrpiv?

Rack solve

find next pivot:
diagonal pivoting
first, complrte

I Forcecall S II’PS 1.’

Forcecall .S”.’fRO I!’
permute pardlcl pivot rows
to put uirrtris in pivot order

+

find next pivot:
diagonal pivoting
first, complrte

I Forcecall S II’PS 1.’

Fo rccc a I 1 r c drc ce +
I

’ I

Forcecall SORT i

sort pivots in decreasing
order of Alarkowitz no. ,

?

Fo rc cc a I 1 i t i p a ir
construct the incompatiI)le
table

I: o rc ec a I 1 Co m y 3 et
produce elimintion set

U I
Parpivm false

stability and discard
unstable pivots

for fill-in

Forcecall SIVPSY I save pcrrnat ation information

10

nonadjacent pairs for compariwo. 'Thlu is 3 rather large overhead but i s per-

formed in parallel by prorewe\

of sequential code is ceecicd t o 2.dlust r.iic r u g ? of indices for the uext iteration.

In bet weer. tbe iterations however, a large qcction

c

Procedure Batcher a w l
Global l ,p ,q , r ,d

Barrier
t = [lognl

p" 2'-1

q = 2 " ' , r o o , d = p ;
End barrier
while (p > 0) do

begin
Presched DO ' i= I , n - d
(com pute correct index)
q - (i - l) / p
j = p ' q + r + i
i f (i 5 (n- d)) then

End Presched DO
Barrier
if(p f q) then

compare and exchange;

d - q - p
9' g R
1-p

P' lP/21
else

endif
End barrier
endwhile

It has been shown that with enough parallel operations, sorting is com-

pleted in 112 [log n1 ([log n1+ 1) steps. The sequential work and the small critical

section used in implementation of the barrier construct will dominate the parallel

work unless n is very large.

The semantics for Barrier construct are such that all procelwcs pause when they reach the Barrier.
After all have arrived, one process executes the section of code enclosed by Barrier-End barrier pair. After
the sinKly executed code section is complete. 311 processes will resume execution after the End barrier.

* Preached DO loop causes the body of the loop enclosed between i t and the matching End Preached
DO to be executed in parallel for different values of i. Instance8 of the loop body must be independent for
different values of i.

11

4.2. Parallel Inyair The incompnfible table is constructed i n t h i g routine.

Each columo of this table corresponds to a pivot or the matrix and c*,,ntaim t,he

list of pivots incompatible wi:,h the pivot under consideration. This informaiuon is

used in the ronatruct,ion of the partial binary tree search described in the next sec-

tion. Aasume pivots are numbered 1 to n Corresponding to diagonal elements of

row9 1 tbrorigh n of the matrix ordered with decreasing hlarkowitz number.

Columo i or the incompatible table corresponds to pivot number I of the matrix.

Each column of the table can be constructed independently by a parallel process.

Parallel processes are prescheduled over a loop of indices (i) corresponding to

diagonal pivots of the matrix. Each process, say i , scans the row-column pair

corresponding to pivot i . I f a nonzero element alj or a,i is encountered a mark for

pivot j is entered in row j of column i of the incompatible table, indicating pivot

i is incompatible w i t h pivot i . No process synchronization is required since each

process is responsible for scanning row-column pairs of different diagonal elements

and updating the corresponding columns of the table. Figure 4.1.b shows the

ordered incompatible table for the sparse matrix of Figure 4.1.a. The algorithm

c s n be described as:

Procedure Incompatible table
Global imptbl[1 ..n] of set 1 ..n;
Global n,nrem ;
Presched DO i = nrem,n

scan row i for any nonzero 0,)

if fJ not in impfbl(i) then
add f, t o imptbl(i)

scan col i for any nonzero a,,
if P, not in irnptb4 i) then
add P, t o imptbl(i)

End Presched DO

The construction of the incompatible table requires scanning NZ nonzeros

of the matrix. As can be seen from the procedure the only set operations required

are addition of a new element to a set and a test for membership. These

12

Markowitz
Number Pivot

1 0
2 0
3 2
4 2
5 2
6 4
7 3
8 9
9 12
10 4
11 12

8
9

11

Order

9
11
8
6
10
7
3
4
5
1
2

1 2 3 4 5 0 7 8 9 10 11
X

.y
X X X

X X
X X X

X X
X X X X

x x X X

X X x x X

X X x x

X X x x x

Slatrix A 1

Pivots Ordered w i t h Markowitz Number

Figure 4.1 a

13

1 1
8
0
10

3
4
5
1
2

-
I

9 11 8 6 10 7 3 4 5 1

Figure 4.1.b Ordered Incompatible Table

operations are O(I) , therefore the incompatible table can be constructed in

O(N Z / N P R O C) time with NPROC parallel processes.

4.3. P a r a l l e l C o m p s e t The procedure that produces the ordered compatibles

has two major parts. The first part, generates several starting sets a t a given level

(C'LEVEL) of the binary search tree. The second part produces an

ordered compatible for each of the starting sets from the incompatible table.

The binary tree search is a systematic approach for extracting the maximal com-

patibles. Initially, it is assumed that all pivots are compatible. They are grouped

in one set consisting of all pivot (diagonal) elements. This set, S, will be a t the

root of a binary tree, level zero. Next, the set of pivots incompatible with the

pivot of minimum Markowitz number, PJ, obtained from the incompatible table,

imptbl, is used to split S into a left S , and a right S2 set, constituting level one.

S, consists of all elements of its parent S except those incompatible wi th Pi. S,

consists of the same elements as S except PJ itself. At each level of the binary

tree sets are produced by splitting the parent set into left and right sets, taking

pivots in increasing order of Markowitz number from the ordered list of pivots to

split the sets. This process continues until we have produced all starting sets,

14

, ~ ~ ' / ~ " ~ " , - ' through .S(''-E"E[* - I at . level ULEVEL,. The p;rrtiaI binary tree

search for the example matrix of Figure 4.1 and for ULEVELs3 is shown in Fig-

ure 4.2 . ~ 1 s We can see eigot starting sets are produced for this level of the tree.

Note that set 5 and 6 are the same as their parent set simply because the parent

set could not have been split for pivot number 10. Different ordering3 of pivots for

splitting the nodes of the binary tree are considered in [2], [3], and [4].

In the second part of this procedure an ordered compatible is generated for

each of the starting sets. This is done by scanning the incompatible table

corresponding to each starting set in decreasing order of Markowitz number of

pivots in the starting set.

The incompatible table for a given starting set, SI, is the original table with those

rows and columns corresponding to pivots absent from SI eliminated.

For each starting set, SI, its corresponding incompatible table is scanned. Any

pivot P, whose corresponding column in the incompatible table, imptblp,, is null is

added to the ordered compatible, compset,. In addition any pivot P, for which

imptblp n compset,= empty is also added to compset, since compset, does not con-

tain any pivots incompatible with P,. Finally the ordered compatible of maximum

size and minimum hlarkowitz sum is selected as the elimination set to reduce the

matrix. The ordered compatiblea corresponding to the eight starting sets above

are given in Figure 4.3. Any of these sets can be selected to reduce the matrix in

parallel. Among these ordered compatibfes compset5, compset6, and compset8 are

of maximum size (5) . The set w i t h minimum Markowitz sum will tend to generate

fewer fill-ins. Therefore compsetd or cornp8et6, which ever is produced first, will

be selected as the elimination set .

1

15

[1,3.4,5,6.7,8,9,10,11]

Figure 4.2 Partial Binary Tree Search

16

comnpset, = [2.3,7,10], Markowitz sum z- I)
cornpaet- = [;',3.5.';;, Xtsrkowicz sum = 7
compact3 = i2,3,9], Markowitt sum = 14
cornpael, = [2.3,4,3!, M w k o w i t z sum = A
r o m p e l , ~1.2,3,7,10), Markowitz sum = 0
compact, = [1,2,3,i,lO!, Markowitz sum 9
compret , (1,2,3,1(3], Markowitt sum = 6

cumpaeta = [1,2,3:4,9], Markowitz sum - 11

The Ordered Computibles and Their Markowitz Sum Number
Figure 4.3

To produce the starting sets a t C'LEVEL, processes are assigned to the

nodes of the part.ial binary tree from the root to level ULEVEL-1. A process can-

not start. to split a set un t i l the set is produced by the parent process. To accom-

plish this, a lock is assigned to each set from the root t o ULEVEL-1. The lock is

initialized to false except for the root set. As soon as a process has completed gen-

eration of a child set, it sets the lock for the child set to true allowing the next

process t,o proceed. This is done by selfscheduling processes over the work. Pro-

duction of starting sets as described above is embodied in the first self-scheduled

loop in the algorithm below.

17

Procedure Compact
Global lock(nset);
Global imptbl (1,n) set of I ..n;
Global S(1. .2X m e t) ;
Global compsf(1,neel) set of l..n;
Local less set of I . . n ;
Local tempset set of l . . n ;

n s d :number of sets from root to CU,EVEL- 1.

Selfsched DO i s 1, (2 (mE'EL- ') - 1)
wait until lock(i) true;
t.ake the next pivot, PI, with Lowest
Markowitz number to split set , :

produce left set . set l o c k (2 X i) to true;
produce right set, set l o c k (2 x i+ 1) to true;

End Selfsched DO
Barrier
End barrier
For each starting set, S,, produce an ordered compatible, compacti

presched DO i s 21'LEtEL-l 2Uf-EmL-1
7

compset, = e m p t y

for j = n down to 1 do
le88 = s- SI

begin
if (P,B SI) t h e n

begin
ternpaet = irnptbl, - less
tempset = tempset n rompaet,
i f (t e m p e l - entpty) then

cornpeet, = compset, + [PI]
end

end
find a local maximum.

End Presched DO

Critical ' max
find a global maximum
End critical

Generation of ordered compatible8 is done by prescheduling processes over

the sets a t ULEVEL. Each process is responsible for keeping an updated copy of

the ordered compatible of maximum size and minimum Markowitz sum it pro-

s A procew t d e r the next unassigned value of i se soon aa it is free. This tends to even the work lord

' Mutual exclusion is accomplished by critical sections, begun by Critical statement m d ended by
over processes when the execution time of the loop can vary significantly for diflcrent i values.

End critical.

18

I

diicr4. In order to do this, proccwcs c-xeciite 3 section of code to obtain 3 local

maximum. After processes have completed t h e execut,ion of the prescheduled loop

body, they execute a critical section to obtain a global maximum (eliminatton set) .

Production of K starting sets for a given C'LEVEL takes a constant time.

For IJLEVEL small and constant c.ompared to n, generation of

ordered compatibler from starting sets is of order n set intersection and diEerence

operations. Assuming efficient implementation of the set operations is available,

O(s e t o p) , the heuristic algorithm has a complexity of O(K.n-setop), where setop

can be assumed to be constant. Employing NPROC processes will reduce the exe-

cution time of the second prescheduled loop by l / N P R O C . Of course, the com-

plete execution time cannot be improved by l / N P R O C because of the synchroni-

zation code used i n waiting for locks to become true in the barrier code and in the

critical section to find 3 global maximum. As LrLEVEL is increased the number of

parallel processes that. can be effectively used increases but at the same time the

complexity of the algorithm wi l l increase. I t is important to choose ULEVEL such

that the amount of parallelism provided by the underlying hardware is effectively

exploited t o speed up the execution time and not to add to its size.

4.4. Numerical Stability and Trade off Parameters A test for numerical

stability is done by prescheduling processes over the parallel pivot candidates in

the elimination set . Each process searches its pivot column for the maximum

entry, Vmaz. A pivot is numerically stable i f

pivot tolerance < lpivot valuel and

u x I Vmaz I < !pivot value I
pivot tolerance and u are user defined values which define the desired accuracy. If

a pivot does not satisfy the test, it is discarded from the elimination set. When no

19

more parallel pivobs exist, i c . the single pivot.ing loop, if unstable pivots arc still

present an accept.able pivot i s obtained by a complete pivoting strategy. Thus an

unrylnmetric permutat ion is performed to put the matrix in the new pivot order.

Note that for matrices in which diagonal pivoting becomes impossible a t an early

stage during the decomposition, it is possible to switch t o single pivoting code for

a few steps. During single pivoting steps unsymmetric permutations are possible

and will change the matrix structure. So parallel steps may become possible

\

again.

In previous papers we have shown that it is possible to minimize genera-

tion of fill-ins significantly by reducing the amount of parallel work slightly

according to some criteria [2], [3], [4]. Trading off parallelism for fill-in is done

according to the size of the elimination set and a number of parameters:

1. Shrinkage parameter: By allowing a small percentage of the elimination set

t,o be discarded w e can cont.rol the number of compatible pivots to a degree

that does not limit our parallel work by too much.

2. Upper l imit parameter: This limit would allow just enough parallel work to

keep our parallel processes busy.

3. Threshold parameter: In shrinking the size of an elimination set only pivots

with hlarkowitz number higher than a threshold value in the ordered list of

pivots may be discarded. Pivots with low Markowitz numbers do not tend to

generate many fills and need not be discarded.

If trade off is possible then pivots are discarded from the elimination ret

asynchronously by parallel processes. Of course it is not necessary t o use a very

tight synchronization. I t is possible to calculate the number of pivots with the

highest Markowitz number to shrink the elimination set and to let parallel

i processes to discard these pivots without synchronization. This approach is more

20

parallel but less flexible on thr * i ze of t h e resulfing elimination a r t .

i
4.5. Para l l e l SWPSV Once prrrsllel pivots are determined the macrix is per-

muted to the new pivot order. Thc permutation information is saved iu procedure

SWPSV. The destination addre~ses of parallel pivot candidates are stored such

that a t each parollel step r o a s and c e l u m u s are swapped only once. At each step

indices of pivots in the elimination et are checked against the upper left hand

corner of the unreduced matrix. Let nrem be the index of the next row to be

reduced in the remaining unreduced matrix. Let npiv be the number of pivots in

the elimination s e t . I f i is the index of 3 pivot in the elimination a e t , then if

i < nrem + npiv - 1

there is no need to permute row and column i. Therefore pivot i can be marked to

avoid unnecessary permutationq. This is accomplished in a prescheduled do loop

over the pivots in the elimination Jet. Having identified the necessary permuta-

tions, the required information is stored in permutation vectors in a self-scheduled

loop. Each process obtains the index of a row to be swapped and updates the

corresponding entries in the permutation vectors. This is a simple routine and is

parallelized over the compatible pivots in the elimination set(npiv) . The order of

the sequential routine is O(npiv). since it only involves exchanges of entries in the

permutation vectors for parallel pivot candidates.

4.6. Parallel SWPROW The actual permutation of rows and columns is per-

formed by routines S WPRO I C ' and S WPCOL. Parallelism could be most effective

if rows of the parallel pivots are completely permuted first followed by column

permutations. A single step row-column permutation would involve many changes

in the row and column lists of the matrix structure and would require tremendous

21

amount of synchronizing (*ode 'Thus SIYPHOIY permutes all the pivot row9 i i ;

parallel, and S WPCOL pcrinuteu all pivot columns. Barricr 3yactro2izzt iou IS

necessary in between the r3lls to the two routines. These routines are syrumet,ric

in the function they perform, so only SU-PROW is described.

The rows nnd columns of the pivots in the cfirniriotion set are to be per-

muted w;t.h others in the remaining matrix such that the matrix is in the pivot

order with any ordering of elements within an eliminationset. !n permuting paral-

lel pivot rows the next row pointer and the row index fields must be updated. So

after all parallel pivot. rows are swapped with their destination rows, each column

of the matrix will be in increasing order of row indices obtained from the permuta-

tion vector. This suggests that we can sort the columns of the matrix according to

the new ordering given by the permutation vector. Of course not every matrix

column has to be sorted. Only columns having a nonzero element in any of the

rows involved in permutation must be sorted. Therefore by constructing a bit

vector which is the result of the union of the boolean vectors corresponding to the

permuting rows (parallel pivot rows and their destination rows), we gather the

indices of columns bo be sorted. Construction of the boolean vectors for parallel

pivot rows and their destination rows is done in parallel be prescheduling

processes over these rows. The union operation is then performed sequentially.

Note that the union could be done in parallel using a parallel tree sum computa-

tion method. This would involve much storage for the intermediate results but

would speed up the operation.

Next, every column having bit position in the resulting bit vector set must be

sorted. Each column consists of very few nonzero elements due to the sparsity of

the matrix and hence a simple bubble sort can be used efficiently to sort the

columns. The sorting of columns are independent operations and can be done

simultaneously by parallel processes. This is done by self-scheduling the processes

22

over the work. Each proces c~sccules R small critical section to obtain the index

of the next column to be sor:cd. The algorithm description follows:

Procedure SN'PRO It'

Global brow: array11 . 2 X r~piw] of a c f s ;
bit vectors of rows to be permuted.

Global colindez: a e t J ; t i t vector of column indices
to be sorted.

Presr hed DO i a I , 2 X npiv
(initialize the boolean vectoru)
brouj i) = 0

End Presched DO
Barrier
End barrier
Presched DO i= 1, 'LX npicr

obtain index, j , of the row to be permuted.
scan row j and for each nonzero ut&

add k to b r o u (i)
End Presched DO
Barrier
col indez=brow(1)U b r o w (2) u . . * U brow(2x npiu)
End barrier

Critical n e i t c o l
get R local column index. j, from rolindez to be sorted.
End critical
if (j is a valid index) then

sortnest:

bubble sort c o l u m n j using the information
from the permutat ion vector.
go to sort n e x t

endif

The sort is O(n$), where nz is an average number of nonzeros per row or

column. The sort must be done for all columns in the rolindez vector. This

number is usually a multiple of n:, say Knz, and in the worst case could be n, the

order of the matrix. It also involves the set operations union and the next element

from colindez which is implementation dependent. The next element operation is

performed within the loop and can be done in O(1). Thus on the average the

number of operations in this routine is of order of:

o(~ d)

23

I f K . n z parallel processes exist,, SWPRO W can be done in time O [n t) ? .

4.7. Parallel r educe The numerical decomposition and insertion of fill-ins for

the elimination set is parallelized by self-scheduling processes as follows:

The reduction of each row for a pivot in the elimination aet is performed

by a parallel process. I f no more rows are left to be reduced for this pivot, the

reduction process for the next row can be started by parallel processes looking for

more work. The logic to do this is contained within a critical section of code. A

process obtains a local pointer to the next row having a nonzero in the pivot

column it is processing, advances the global pointer and exits the critical section.

If no more rows are left to be updated for the pivot under consideration, the pro-

cess advances a global pointer to the next pivot in the elimination set and obtains

the next row pointer for the new pivot in the same manner and exits the critical

section. Thus processes work in parallel over rows of a single pivot first and over

the parallel pivot candidates in the elimination aet next.

Each process is responsible for dividing the nonzero element in the pivot

column by the pivot and subtracting a multiple of the pivot row from the r o w , j ,

being updated. The process must also check for a possible fill-in and insert it if

necessary. The search for a possible fill-in must be done atomically so that paral-

lel processes do not try to insert the same element in the same position w i t h

different values. Means must be provided to allow only one process to insert a

fill-in alk and others to update the element after it is inserted. This can be done

by locking the row j and column k of the matrix such that it can only be searched

by one process at a time. The locking of a row and column is done by a critical

section on elements of two asynchronous arrays, one for rows and one for columns.

Any two shared arrays, for example nojr and nojc , that are not used throughout

24

t t11s process can be risen far this purpose. Of course only one element can be

Inserted in the m a t r i x 5tructrire 31 :\ time since the insertion causes changes in the

pointer st riicture for rows a ~ d columns other than j and k alone. It is important

to note that the probability of searching for the same element by more than one

process a t the s3me time is very low The synchronization described above is

necessary for correct solution and does not increase the execution time by much.

'The updating of an element must also be done atomically by processes. Again the

probability of more than one process trying to simultaneously update the same

element is low. This synchronization c a n be done by simple scoreboarding which

m u s t be available in machines matching our computational model.

25

Procedure reduce

Barrier
ii - index of the first pivcit i i i tho ordered ma~rix.
End harrier

Critical nett

c getwork:

(get next parallel work!
i s i i l o c d pivot index
(get a local row index to Le reduced)

j- nettrow in pivot columc ii
i f (i not valid) and (more pivots j then
begin

i= ii+ I ; advance to hhe next pivot and update
ii= i
goto local; get the w x t . row.

local:

, the glob31 pivot pointer.

endif
update global nertrow pointer information.

End critical
if(j valid) then
begin

uJI = uJl/uII;
scan pivot row i and for each n,k:

(check for a possible fill-in)
(lock row i and column k 1
Critical nofr(j)
Critical n o f c (k)

divide by pivot

i f (QJk. not in matrix) then
Critical insert
insert the element
End critical

End critical
End critical

atomically update u,k
u j k = -
goto getwork

endif

Reduction of the matrix for a single pivot requires a complete scan over

the matrix which can be done in time NZ. For npiv pivots the time would be pro-

portional to npiv-NZ. NZ changes as fill-ins are encountered or a3 the matrix gets

smaller due to the reduction. DUB [.I] reports that over a wide variety of matrices,

the number of arithmetic operat ions performed has been empirically observed to

be about 7*/4n where T is the number of nonzeros in the decomposed form. The

value of T is generally not known a priori. Experience has shown that a value

26

5/',?N% is a *atisfactory e5tiruat.e for T although an esbinate of ordcr nlog n is more

realivtic for problems arising from PDEs in t w o dimensions.

5. Implementation Results The program IS implemented for the HEP (Hetero-

geneous Element Processor) pipelined shared-memory computer built by Deneicor,

Inc. [E] . The resuits prcscnt.ed here are on a single PEM (Process Execution

Module). Thc execution pipeline on the IiEP has eight steps. In the HEP the

degree of simultaneous execution is limited by the length of the various pipelines

and may be characterized by an average pipeline length. Thus on a single PEM a

program may be expected to speed up by no more than 7.5 to 9.5 over single

stream execution. The LU Decomposition program has also been simulated on a

Vax 11/780 and tested on many application matrices arising from electronic cir-

cuits and structural analysis producing successful results [2], [3), 141. Here we

represent the timing results of running the program over a 1 4 1 by 144 matrix from

the circuit of an 8-bit f u l l adder and employing different values for trade off

parameters. Figure 5.1 represents the execution time of LU Decompoaition pro-

gram for different numbers of processes from 1 to 25. The result is for the case

when maximum parallelism is used. For N P R O C = l , the matrix is completely

reduced in 10 parallel steps. The number of compatible pivots a t each step is 7 2 ,

2 5 , 16, 11, 6 , 5 , 3, 2, 2, and 1 respectively. Note that in the first step half of the

matrix is reduced in parallel. The execution time decreases with an increase in the

number of processes up to N P R O C - 1 1 . In fact there is U N P R O C reduction in

execution time for small values of N P R O C as new processes make efficient use of

the execution pipeline. This decrease in execution time bottoms out as the pipe-

line becomes full. The slope of the linearly rising tail of the curve indicates the

length of time spent in critical sections in various points in the program. A com-

27

EXECLITIBN T I H E
I SECBNOS I

3. SGO

3.000

2.500

2.000

I . 500

I .ooo

0.500

0.

Y

Y

X

X

Figure 5 . 1 Execution Time vs. Number of Processes
No Trade off
144X 144, NZ= 616,8-Bit Full Adder

28

plete model for analysis of parallel programs can be found in (2.31. Defining the

speed u p to be:

T(1)
T(Y P R O C)

S a

where T (1) is the time to execute the program with one process and T ("VPROC') is

the same time using 'VPROC' processes. Then a speed up of 4.82 is obtained for 11

processes. Note that t,his is not speed up measured with respect to the best

sequential algorithm, but only gives insight to the parallelism in this program.

For a small number of processes, execution time versus number NPROC

of processes can be represented as:

C? T (N P R 0 C) = C , + N P R O C

where G, represents the sequential portion of the work and C, the parallel por-

tion. A simple least squares fit to determine C, and C, is applied to a linear por-

tion of the execution time versus N P R O C curve to estimate the degree of parallel-

ism. This analysis shows that the code is 87% parallel. Figure 5.2 shows the exe-

cution time versus X P R O C for individual routines. As can be seen there is a

sharp increase in the slope of the sort curve for large NPROC which indicates

parallel processev spend more time in the critical section than doing useful parallel

work. Of course a reason for this behavior is the small value of N, order of the

matrix. As N increases the slope becomes smaller. A speed up of 3.3 for 8

processes is obtained for the sort. The degree of parallelism for this routine is

58%.

For the C o m p a c t routine speed up is 5.7 for 10 processes, and the code is 93%

parallel. Here the value of ULEVEL is 4, so there are 10 starting sets for which an

ordered compotibfe must be produced in parallel. Therefore every time number of

active processes divides 10 evenly a sharp decrease in execution time is observed.

Speed ups for reduce and SWPROW are 4.4 for 11 processes and 0.5 for 12

29

EXEi l lT lBN T l n E
I ZECBNOS I

1.190 r

1 .ooo

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.

CBHPSET x

S0RT 4

SWPRBW 0

REDUCE

Figure 5.2 Execution Time vs. Number of Processes
for Individual Routines, No Trade off
144X 144, NZ=616,8-Bit Full Adder

30

. .-

procrqws rcrpectively. T l w drgn 1. of p:ir:~lIvliqin for t,tlcsc t w o rc,iitint.+ WI- 8 j";,

and 93% respectively. Our nuiricricai results about number of availabie paraiic!

pivots indicate the existence of L ~ Y Q parsilel operations snd it is clear that by

moving to comp1ltei.s with more parallel units or PEMs in the cast? of HEP a

higher degree of parallelisoi can be achieved.

The program is noncletermirlistic when executed in parallel. In many cases

there are several sets of cquai m a x i m u m size and minimum Markowitz sum.

Depending on the number of processes and their relative speeds, one of the candi-

date ordered compatibles wil l be selected as the elimination set . Thus diflerent

results are produced. The number of fill-ins generated for single stream execution

is 280. For different values of NPROC this number is in the range of 89% to

103% of the fill-ins produced sequentially.

Table 5.1 shows the result of running the program on the same matrix when trade

off parameters are used. The values of parameters for this case are given below:

Threshold 1/3

Shrinkage Parameter 30%

Upper Limit 25

CrL E \'EL 'I

Table 5.1

Routine NPROC Speed up

LU Decompoae 9 5.81

Bateher 7 3.5

Com pa et 18 6.1

SWPROW 14 0.54

reduce 9 4.15

The higher speed up indicates that by employing the above paramcters a better

balance between number of compatible pivots generated at different steps is

achieved. A reduction of 23% in 811 iu obtained as the result of the above parame-

ter variations which compares reasonably w i t h results from the best sequential

program (100). The fill-in can further be decreased by assigning different values to

trade off parameters.

The results of running the program on a 505 by 505 matrix produced from

SPAR, a structural analysis program [24] is given in Figure 5.3 and 5.4. In the

NEP, for every new process a local stack area is allocated. This area depends on

the amount of local storage and some other system parameters. Due to the limited

size of the available memory the program could only be run on this matrix for up

to 7 processes. The trade off parameters for this run have the following values:

Threshold 213

Shrinkage Parameter 40%

Upper Limit 00

UL E VEL 4

Using a least squares fit the degree of parallelism for each routine is summarized in

Table 5.2.

Table 5.2
_-

Routine Degree of Parallelism

LU Decompose 95%

Botcher 93.37%

Compset 91.45%

SWPROW 92.22%

reduce 85.44%

60.000

SO. 000

40.000

30.000

20.000

1o.coo

0.

32

EXECUTION T l Y
I SECBROSl

70. OOC CBMPSET X

SBRT

SWPRBW 0

REOUCE I

Figure 5.3 Execution Time vs. Number of Processes
for Individual Routines
ULEVEL=4, Shrinkage=40%, Upper Limit=80, Threshold- 2/3
505 x 505, NZ-5889, from SPAR Program

33

EXECLlTl'dN TIHE

.
NPRK

Figure 5.4 Execution Time vs. Number of Processes
Comparison of Parallel Pivoting and Reduction
ULEVEL - 4, Shrinkage-40%, Upper Limit-60, Threshold- 2/3
505X 505, NZ- 5880, from SPAR Program

34

The 93% parallelism from t,he sort indicates that , for large values of 'C', parallel

processes spend more time perfarming parallel operations than in the critical sec-

tion.

Figure 5.4 compares the total execution time spent in routines to Bnd the parallel

pivoting candidates and execution time of the rest of the program for LU dccom-

position. As can be verified from thib figure the time spent to Bnd the parallel

pivots is much less than the time to perform the decomposition. This difference

increases as the size of the matrix becomes larger, verifying the advantage of

parallel pivoting.

6. Conclusion A set of parallel algorithms for performing LU decomposition of

general unsymmetric sparse matrices for shared-memory MIMD computers has

been presented. The sparse L U decomposition technique employs a parallel pivot-

ing strategy to solve the problem of having enough parallelism in sparse matrices.

The main features of the heuristic algorithm can be summarized as follows:

-It can ident,ify a good set of parallel pivots in linear time.

-It is 3 stepwise algorithm and can be applied to any submatrix of the ori-

ginal matrix. Thus it is not a preordering of the sparse matrix and is applied

dynamically as the decomposition proceeds.

-Pivots can be tested for numerical stability and unsymmetric permuta-

tions can be performed if necessary.

-Trade off between parallelism and fill-in is possible under several program

controlled parameters.

-The information produced by the algorithm can be stored to decompose

structurally identical matrices.

35

We have presented the parallel reduction combined wit.h parallel pivoting

t e c l ~ u i c ~ u e , control over the gcoc-ration of fills and check for numerical stability, all

done in parallel with work being diqtribiited over the active processes. The pro-

gram verifies that it is actually possible to do parallel pivoting in sparse matrices

on multiprocessors and take advantage of the existing parallelism in the problem

and in the hardware. The timing aualysis of the routines indicate that every rou-

tine has been eflectively parallelized. The small slope in the execution time versus

number of processes of L Ir Decornpoaition program which represents the amount

of synchronization overhead verifies the effectiveness of parallelization and

machine utilization.

Acknowledgment The author would like to express her sincere appreciation to

Dr. H. F. Jordan for his support and constructive comments and advice.

,

36

Refer en ces

(11 M. Yannakakis "Comput ins t h e Minimum Fill-in is NP-complete," SIAM J.

.4 lg . DISC. .Wath. 2 . pp. 77-79. 1981.

[2] C. Alaghband ", \ fu l frproce~aor Spnrae LCr Decomposition with Controlled

Fill-in." Ph.D. thesis, Gepartment of Electrical and Computer Engineering,

1:niversity of Colorado, Boulder, May 1980.

(31 G. Alaghband. H. F. Jordan "Spar3e Gaussian Elimination with Controlled

Fill-in on a Shared hlemory Xlultiprocessor," ECSE Technical Report 86-1-5,

Electrical and Computcr Engineering Department, LJniversity of Colorado,

Boulder, November 1986.

[4] C. Alaghband and H. F. Jordan "Multiprocessor Sparse L / U Decomposition

with Controlled fill-in," IC.4SE Report No. 85-48, NASA Langley Research

Center, Hampton , Virginia 23065, 1985.

[5] D. A. Calahan, "Parallel Solution of Sparse Simultaneous Linear Equations,"

Proc. 11-th Annual .4llerton Con/. Circuits and System Theory, pp. 729-735,

Oct. 1973.

[6] J. W. Huang and 0. lying "Optimal Parallel Triangulation of a Sparse

Matrix," IEEE Trans. on Circuits and Systems, vol. CAS-20, No. 9, pp. 726-

732, Sept. 1970.

[7] 0. Wing and J. W. Huang "A computation Model of Parallel Solution of

Linear Equations," IEEE Trans. on Computers, vol. (2-29, No. 9, pp. 032-038,

July 1980.

37

,

[8] Y. F. Zhou "Optim31 Farnilel Triangulation of a Sparse Matrix- A Graphical

Approach," IEEE 19HI Syrup. un Circuits and Syatcms.

[O] K. Nlskajim,r ".4 Graph 'I'hroretical .4pproach to Parallel Triangullt.ion of a

Sparse Asymmetric hiatrix," Proceedings of 1984 Con/. orb Informution Sci-

ence and Systcnis.

(10; J. A. C;. Jess and H. G. hl. Kees "A Data Structure for Paralle; LL; Decornpo-

sition," IEEE Trona. on Computers, vol. C-31, no. 3, pp. 231-239, March

1982.

[l I] F. J . Peters "Parallel Pivoting Algorithms for Sparse Symmetric Matrices,"

Parallel Computing 1, pp. 99-1 10, 1984.

[121 M. R. Leuze "Parallel Triangularization of Substructured Finite Element

Problems," IC.4SE Report no. 84-47, Sept. 1984.

[13] I. S. Duff "Parallel Implementation of Multifrontal Scheme," Argonne

National Laboratory, hfat bematics and Computer Science Division, Technical

Memorandum no. 49, hlarch 1985.

[l 4] G. Alaghband and H. F. Jordan "Parallelizing a Sparse Matrix Package,"

Report CSDC 83-3, Computer System Design Group, Electrical and Com-

puter Engineering Department, University of Colorado, Boulder, June 1983.

[IS] Z. Kohavi "Switching and Finite Automata Theory," Computer Science Series,

Second Edition, McGraw Hill Book Company, 1978.

[IS] D. Lewin "Logical Design of Switching Circuit#," American Elsevier Publish-

ing, New York, 1974.

[17] H. M. Markowitz "The Elimination Form of the Inverse and its Application

to Linear Programming," Management Science, 3, pp. 255-269, 1957.

38

[18] H. F. Jordan "Parallel Computation with the Force," ICASE Report no. 85-

45, NASA Langley Research Center, Hampton, VA, October 1985.

,

I191 H. F. Jordan "Structuriug Parallel Algorithms in an MIMD, Shared Memory

Environment," Parallel Computing, May 1986.

[20] K. E, Bat.cher Proc. AFlPS Spring jo in t Computer ConIerence, 82, pp. 307-

314, 1968.

[Z l] D. E. Knuth "The -4rt of Computer Programming, Sorting and Searching,"

vol. 3, Addison-Wesley, 1973.

(22) J. S. Kowal ik T h e HEP S u p e r c o m p u t e r a n d Its Appl ica t ions , Ed., MIT Press,

1985.

[23] H. F. Jordan "Interpreting Parallel Processor Performance Measurements,"

Repor t CSDG 85-1, Computer System Design Group, Electrical and Com-

puter Engineering Department, University of Colorado, Boulder, November

1985.

[24] "SPAR," NASA CR 158970-1, Engineering Information Systems Inc., San

Jose, CA, Dec. 1978.

.

Report Documentation Page

19. Security Classif. (of this report)
Unc l a s si f i ed

1. Repon No. I 2. Government Accession No.

21. No. of pages 22. Price

A03
20. Security C l d . (of thii pa I

Unclassif ied '@ 40

NASA CR-178422
ICASE Report No. 87-75

4. Titk and Subtitle
PARALLEL PIVOTING COMBINED W I T H PARALLEL
REDUCTION

9. Performing Organization Name and Address
I n s t i t u t e for Computer Appl ica t ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

w r i n g Agency Neme and Address
g t i o n a l Aeronautics and Space Adminis t ra t ion
Langley Research Center
Hampton, VA 23665-5225

and Engineering

12. S

3. Recipient's Catalog No.

5. Report Date
December 1987

6. Performing Organization Code

8. Performing Organization Report No.
87-75

10. Work Unit No.
505-90-21-01

11. Contract or Grant No.
NAS1-17070, NASl-18107

13. Type of Ropon a d Period Covered
Contrac tor Report

15. Suppkmenta
Langley ?eN2Eical Monitor:
Richard W. Barnwell Journal

Submitted t o P a r a l l e l Computing

I Report
16. Abstract

P a r a l l e l a lgor i thms f o r t r i a n g u l a r i z a t i o n of l a r g e , spa r se , and unsymmetric
ma t r i ces are presented. The method combines t h e p a r a l l e l reduct ion wi th a new
p a r a l l e l p ivot ing technique, con t ro l over gene ra t ions of f i l l - i n s and check f o r
numerical s t a b i l i t y , a l l done i n p a r a l l e l wi th the work being d i s t r i b u t e d over t h e
a c t i v e processes . The p a r a l l e l technique uses t h e compa t ib i l i t y r e l a t i o n between
p i v o t s t o i d e n t i f y pa ra l l e l p ivo t candida tes and uses t h e Markowitz number of
p i v o t s t o minimize f i l l - i n . This technique is not a preordering of the s p a r s e
ma t r ix and i s appl ied dynamically a s t he decomposition proceeds.

17. Ke Words ISuggestd by AuthorIs))
mu1 t l p r o c e s s o r , Gaussian e l i m i n a t i o n ,
p a r a l l e l p ivot ing

18. Distribution Statement
61 - Computer Programming and

64 - Numerical Analysis
Unc la s s i f i ed - unl imi ted

Sof tware

I 1

NASA FORM 1- OCT 88

