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1. Introduction In this paper we present multiprocessor algorithms for solving 

large systems of linear equations where the coefficient matrix is sparse and unsym- 

metric. VLSI circuit simulation, structural analysis, partial differential equations, 

and chemical analysis are few examples of applications requiring the solution of 

such systems of equations. 

The algorithms described in the paper are designed for a shared-memory, 

MIMD model for parallel computation, in which the total memory address space is 

accessible uniformly to all parallel units. This computational model provides syn- 

c hronization mechanisms to allow multiple updates. If multiple updates are aimed 

a t  the same memory cell, the penalty paid is a short delay in access time. 

Given is a system of linear equations: 

A z = b  ( 1 . 1 )  
where the coefficient matrix, A ,  is large and sparse. This paper concentrates on a 

direct parallel solution method for solving ( 1 . 1 )  by factoring A into lower (L) and 

upper ( U) triangular matrices respectively. 

A = LU (1.2) 
The solution is then obtained by forward and back substitution steps: 

Ly = b (1.3) 

uz - y (1.4) 
To solve ( l . l ) ,  a sparse matrix technique based on the following principles is used: 

a) Only the non-zero elements of A are stored. 
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b) 

c )  

Arithmetic operatiow arc. pcrfot:i!ed on non-zero elements only. 

During the decompopitiou fill-ius are generated, i.e. new nowzero e!emeuts 

3re created i n  thr pmxss of g e n e r d n g  zeros below the diagonai. The 

number of fill-ins i s  kept small. 

The three problems qt:itc.d above are all related. Even though only non- 

zeros need to be stored, f i l l - ius  m u s t  he stored in the matrix structure. Therefore, 

minimization of fill-iu wil l  result in minimization of the arithmetic operations and 

storage as well. One must find a permutation of the sparse matrix A to  satisfy the 

above goal. The problem of fincling an optimum permutation to minimize fill-in is 

NP-complete [ l ] .  and many heuristic algorithms have been developed t o  obtain 

near optimal solutions for th i s  problem. Most of these heuristics find optimum 

permutations of the matrix which minimize fill-in in sequential solution process 

while they often minimize the amount of possible parallel work in parallel process. 

Therefore an ordering, or pivoting strategy to  minimize some combination of fill-in 

and parallel execution time m u s t  be determined. The design of a heuristic alga- 

rithm which identifies a set  of pivots to be processed in parallel while minimizing 

fill-ins is described in detail in  [2], [3], and [4]. Other parallel pivoting strategies 

have also been suggested [SI, IS], [7], [8], [SI, [lo], [ l l ] ,  [12], (131. In this paper we 

concentrate on parallel implementation of sparse LU decomposition procedure 

using the parallel pivoting technique described in 121, [3], and [4]. In this imple- 

mentation pivots are tested for numerical stability as well as for sparsity. 

A brief description of the parallel pivoting algorithm is given in section 2. 

Section 3 describes the storage structure used in the implementation. In section 4 

the various parallel procedures to perform steps of triangularization are described 

and analyzed. In section 5 we represent actual performance results from the 

parallel implementation of the sparse LU decomposition on the HEP computer. 
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Finally, in section 6 some concluding remarks :we presenter!. 

2. Parallel Pivo t ing  Algorithm The Triangulation of an n X  tt ma!.iix 

A - [a,,] can be described By the  following procedure. 

for K = I ,?,  ..., n- 1 and for each a,k#O 

O j k  - j > k  
O t k  

(2.1) 

For each pair a,k.kj  # 0 

- Oik ' k j  i > k ,  j > k  (2 .2)  
In (2.2) if o,,=O but a,k*atl f O ,  a fill-in is generated. I t  is obvious that if we have 

sufficient processors, the divide operations (2.1) for each column K can be done in 

parallel. Also, for each k the update operation (2.2) for all pairs 0 , k ' O k j  f O  can be 

done in parallel. Our experience in employing this approach has indicated that  

the sparsity of application matrices leaves parallel processes w i t h  little work to  

perform i f  only reduction for a single pivot is done in parallel [14]. During Sparse 

LI; decomposition it is possible to perform computation on many diagonal ele- 

ments simultaneously. In parallel LU decomposition of general unsymmetric 

sparse matrices several key issues m u s t  be considered: 

a )  Parallelism and fill-in are two competing issues and a balance between the 

two must be obtained. In other words minimizing fill-ins results in limited 

parallelism, and maximizing parallelism results in uncontrolled generation of 

fill-ins. 

b) A test for numerical stability of pivots must be made to  ensure the accuracy 

of the solution process. 

c)  In applications where the sparse linear system must be solved repeatedly, i t  

must be possible to  decompose structurally identical matrices using the 
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information produced for !.be Grst decomposition of such matrix. 

d)  A storage structure snicabie Tor parallel processing must be determined. 

A heuristic algorithm has been designed in [2], [3], [4] which identifies parallel 

pivot candidates and allows the matrix to be reduced for multiple pivots simul- 

taneously while it minimizes fill-ins. It is a dynamic algorithm which can be 

:Ipplied a t  any point i n  t h e  decomposition phase and does not require a preorder- 

ing of the input matrix. It allows pivots to be tested for numerical stability. 

Therefore a t  any point during the reduction, if numerically unstable pivots are 

encountered, unsymmetric permutations can be performed. The algorithm can 

then be applied to the remaining unreduced submatrix. This technique also allows 

structurally identical matrices to be decomposed using the information generated 

during the decomposition of the first matrix. In subsequent decompositions a test 

for numerical stability should be made. If the test is not satisfied, an off-diagonal 

permutation can be made and the parallel pivoting algorithm can be applied anew 

to the unreduced matrix only. 

Here we wi l l  concentrate on parallel implementation of this algorithm and 

will not go into a detailed description of its design. A complete and detailed 

description and analysis is available in  [2], (31, [4]. In what follows a brief descrip- 

tion of the algorithm and the required steps is given. The procedure to implement 

each step is presented in detail in section 4. 

Pivots that can be processed in parallel are related by a compatibility 

relation and are grouped in a compatible. In other words pivots f,,, f,,, fu are 

compatible and can be processed in parallel if and only if elements 

ai,, aji, ad, ak,, ( l i t ,  ak; are all zero. The collection of all maximal compatibles 

[15], [16] yields different maximum sized sets of pivots that  can be processed in 

parallel. Several methods for generating maximal compatibles exist and they are 
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all based on the constructiou of an inplicntion (incompatible) table. The incom- 

patible table gives information i h u t  pr.irs of incompatible pivots. Produetior of 

all maximal compatibles iar-oive! siLinnry tree search and is exponectial in thc 

order of the, mat,ri.u. This problem is solvcd by a technique which generates an 

"ordered incompal ible table" haset1 on the Markowitz number [l;] of the pivot. can- 

didates. 

The Markowitz crittriou i s  a heuristic for minimizing fill-ins in sparse 

matrices in sequential programming. It is based on the fact that  a t  each step k, 

the maximum number of Ell-ins generated by choosing alj as pivot is 

( r l -  l )(c,-  l ) ,  where ( r l -  1 )  and ( r , -  1) are the number of nonzeros other than alj 

in row i and column i of the reduced matrix. Markowitz selects as pivot element 

at  step k, the element which  minimizes (II- l)(c,-  l ) ,  which is called the Mar- 

kowitz number of element aij. 

An "ordered Compatible" can then be produced directly from the 

ordered incompatible table without the need to search the tree. The resulting set 

of compatible pivots has the property of generating few fills. The heuristic algo- 

rithm combines the idea of an ordered compatible with a limited binary tree 

search to generate several sets of compatible pivots in linear time. An 

e l i m i n a t i o n  set to reduce the matrix is generated and selected on the basis of a 

minimum Markowitz sum number (sum of the Markowitz number of pivots in a 

compatible). Several parameters are introduced to trade off parallelism for fill-in 

which can be controlled by the program. In summary the algorithm requires the 

following steps: 

1. An incompatible table i s  constructed by scanning the sparse matrix. 

2. Pivots are ordered according to their Markowitz numbers. 
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3. A limitcd binary tree search produces several starting ~ a t s  at  a given 

level (I;LEVEI,) o f  tbe tree. 

4. .An ordered ronrpatible is generated for each sti?rtiug set at ‘JLLL’EL 

from the corresponding ordered incompatible table. 

5 .  The ordered ronrpatible of maximum size and minimum Markowitz sum 

i s  selected as the elimination set to reduce the matrix. 

6. A set of program parameters can be applied to the resulting 

elimination set to furt,her minimize fill-in. 

3. Storage Structure The basic global data structure used in the parallel LU 

decomposition program is described below. Each element of the matrix structure 

consists of five fields: the real numerical value, the row index, the column index, a 

pointer to the next element in the row, and a pointer to  the next element in the 

column. The incompatible table is represented by an array of dimension n ,  order 

of the matrix, with elements of the array imptbl being sets of n elements each. 

Each set corresponds to a column of the table. Column i of the table, irnptbli, 

holds the incompatible information for pivot i of the matrix. Note that the paral- 

lel pivoting algorithm considers only the diagonal elements as pivot candidates. 

Unsymmetric permutations are possible in between parallel pivoting steps. 

cornpsi holds the resulting elimination se t .  
- .  



Type Definition: 
ptr= rnotpac; 
matpac * record 

pointer ~ y p e  to 3 matrix element. 

wal : real; red value. 
row : integer; row index. 
column : integer; column index. 
ne : ptr; pointer to next element in row. 
nr : ptr; pointer to next element in column. 

end; 
roef=(r,c); row aod column list. 
sefs=set of l . .n ;  set t j p e  

Variables: 
A :  array( rocl , l . .n)o/  p t r ;  matrix structure. 
no/r,nojc: array( l . .n)o /  integer; number of nonteros 

imptbl: array( l . .n)oj sets ;  
compst: sets; elimination set. 

in row and column. 
incompatible table. 

4. Parallel LU Decomposition In order to  write efficient parallel programs 

one mus t  consider the underlying parallel architecture to  which the program is t o  

be applied. In an MIMD environment parallelism must be applied a t  the highest 

possible level in the program in order to effectively exploit the underlying parallel 

hardware. In our design and implementation we have used the idea of universal 

parallelism due to Jordan (181, [IS] which is based on writing parallel programs 

assuming that all the parallelism needed by the programmer exists throughout the 

program execution. A set of parallel programming constructs known as "the 

Force" implemented for several shared-memory MIMD computers [ 181, [IS] are 

used in the implementation of the algorithms presented in this paper. 

A high level block diagram of the program is given below. The entire 

LU Dceompor~tion program is executed by NPROC processes. These processes 

can be created by a driver routine. The parallel routines are specified by a Forcc- 

call followed by a brief description of their function on each box. Therefore the 

body of each Force subroutine is executed by NPROC processes in parallel. After 
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the program is completely exerlited, the  parallel procesaes are joined in the driver. 

The flowchart consists of two major loops, parallel pivoting loop and sin- 

gle pivoting loop. The parallel pivoting loop is executed as long as the program 

can find compatibles of more than one pivot, otherwise the single pivoting loop is 

executed. During parallel pivoting steps only diagonal elements are considered as 

pivots and unsymmetric permutations are not permitted. In single pivoting steps 

unsymmetric permutations are allowed and hence any matrix element can be con- 

sidered 3s pivot. 

In the remainder of this section we describe the parallel algorithms involved in the 

LU Decompoai t ion program by stepping through the flowchart in the given order. 

4.1. Parallel Sort A sorting routine is required to  sort the pivots in decreasing 

order of Markowitz number. The ordered list of pivots is used a t  several points in 

the parallel pivoting algorithm: in the construction of an 

ordered incompatible table ,  in the construction of a partial binary tree search, and 

finally it is used to trade off parallelism for fill-in by discarding a fraction of com- 

patible pivots with Markowitz number higher than a given threshold value in the 

ordered list. 

The sorting algorithm used for this purpose is the Batcher sort [20], [21]. 

Batcher's sorting scheme is somewhat like Shell's sort but, the comparisons are 

made in a novel way so that  no propagation of exchanges is necessary. The 

amount of bookkeeping needed to control the sequence of comparisons is rather 

large. All comparisons/exchanges specified by a given iteration can be done simul- 

taneously. In the procedure below processes are prescheduled over a range of 

indices and they perform the comparison/exchange operations in parallel. As can 

be seen from the algorithm a t  each iteration we must compute the range of 

, 
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nonadjacent pairs for compariwo.  'Thlu is 3 rather large overhead but i s  per- 

formed in parallel by prorewe\ 

of sequential code is  ceecicd t o  2.dlust r.iic r u g ?  of indices for the uext iteration. 

In bet weer. tbe iterations however, a large qcction 

c 

Procedure Batcher a w l  
Global l ,p ,q , r ,d  

Barrier 
t =  [lognl 

p" 2'-1 

q =  2 " ' ,  r o o ,  d = p ;  
End barrier 
while ( p  > 0) do 

begin 
Presched DO ' i= I ,  n - d 
(com pute correct index ) 
q -  ( i -  l ) / p  
j =  p ' q  + r  + i  
i f ( i  5 (n- d ) )  then 

End Presched DO 
Barrier 
if(  p f q ) then 

compare and exchange; 

d - q - p  
9' g R  
1-p 

P' lP/21 
else 

endif 
End barrier 
endwhile 

It has been shown that with enough parallel operations, sorting is com- 

pleted in 112 [log n1 ( [log n1+ 1 )  steps. The sequential work and the small critical 

section used in implementation of the barrier construct will dominate the parallel 

work unless n is very large. 

The semantics for Barrier construct are such that  all procelwcs pause when they reach the Barrier. 
After all have arrived, one process executes the section of code enclosed by Barrier-End barrier pair. After 
the sinKly executed code section is complete. 311 processes will resume execution after the End barrier. 

* Preached DO loop causes the body of the loop enclosed between i t  and the matching End Preached 
DO to be executed in parallel for different values of i. Instance8 of the loop body must be independent for 
different values of i. 
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4.2. Parallel Inyair The incompnfible table is constructed i n  t h i g  routine. 

Each columo of this table corresponds to  a pivot or the matrix and c*,,ntaim t,he 

list of pivots incompatible wi:,h the pivot under consideration. This informaiuon is 

used in the ronatruct,ion of the partial binary tree search described in the next sec- 

tion. Aasume pivots are numbered 1 to n Corresponding to diagonal elements of 

row9 1 tbrorigh n of the matrix ordered with decreasing hlarkowitz number. 

Columo i or the incompatible table corresponds to  pivot number I of the matrix. 

Each column of the  table can be constructed independently by a parallel process. 

Parallel processes are prescheduled over a loop of indices ( i )  corresponding to  

diagonal pivots of the matrix. Each process, say i ,  scans the row-column pair 

corresponding to pivot i .  I f  a nonzero element alj or a,i is encountered a mark for 

pivot j is entered in row j of column i of the incompatible table, indicating pivot 

i is incompatible w i t h  pivot i .  No process synchronization is required since each 

process is responsible for scanning row-column pairs of different diagonal elements 

and updating the corresponding columns of the table. Figure 4.1.b shows the 

ordered incompatible table for the sparse matrix of Figure 4.1.a. The algorithm 

c s n  be described as: 

Procedure Incompatible table 
Global imptbl[ 1 ..n] of set 1 ..n; 
Global n,nrem ; 
Presched DO i =  nrem,n 

scan row i for any nonzero 0,) 

if fJ not in impfbl( i )  then 
add f, t o  imptbl( i )  

scan col i for any nonzero a,, 
if P, not in irnptb4 i )  then 
add P, t o  imptbl( i )  

End Presched DO 

The construction of the incompatible table requires scanning NZ nonzeros 

of the matrix. As can be seen from the procedure the only set operations required 

are addition of a new element to  a set and a test for membership. These 
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Markowitz 
Number Pivot 

1 0 
2 0 
3 2 
4 2 
5 2 
6 4 
7 3 
8 9 
9 12 
10 4 
11 12 

8 
9 

11 

Order 

9 
11 
8 
6 
10 
7 
3 
4 
5 
1 
2 

1 2  3 4 5 0 7 8 9 10 11 
X 

.y 
X X X 

X X 
X X X 

X X 
X X X X 

x x  X X 

X X x x  X 

X X x x  

X X x x x  

Slatrix A 1  

Pivots Ordered w i t h  Markowitz Number 

Figure 4.1 a 
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1 1  
8 
0 
10 

3 
4 
5 
1 
2 

- 
I 

9 11 8 6 10 7 3 4 5 1 

Figure 4.1.b Ordered Incompatible Table 

operations are O( I ) ,  therefore the incompatible table can be constructed in 

O( N Z / N P R O C )  time with NPROC parallel processes. 

4.3. P a r a l l e l  C o m p s e t  The procedure that produces the ordered compatibles 

has two major parts. The first part, generates several starting sets a t  a given level 

(C'LEVEL) of the binary search tree. The second part produces an 

ordered compatible for each of the starting sets from the incompatible table. 

The binary tree search is a systematic approach for extracting the maximal com- 

patibles. Initially, it is assumed that all pivots are compatible. They are grouped 

in one set consisting of all pivot (diagonal) elements. This set, S, will  be a t  the 

root of a binary tree, level zero. Next, the set of pivots incompatible with the 

pivot of minimum Markowitz number, PJ, obtained from the incompatible table, 

imptbl, is used to split S into a left S ,  and a right S2 set, constituting level one. 

S, consists of all elements of its parent S except those incompatible wi th  Pi.  S, 

consists of the same elements as S except PJ itself. At each level of the binary 

tree sets are produced by splitting the parent set into left and right sets, taking 

pivots in increasing order of Markowitz number from the ordered list of pivots to  

split the sets. This process continues until we have produced all starting sets, 
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, ~ ~ ' / ~ " ~ " , - '  through .S(''-E"E[* - I at .  level ULEVEL,. The p;rrtiaI binary tree 

search for the example matrix of Figure 4.1 and for ULEVELs3  is shown in Fig- 

ure 4.2 .  ~ 1 s  We can see eigot starting sets are produced for this level of the tree. 

Note that set 5 and 6 are the same as their parent set simply because the parent 

set could not have been split for pivot number 10. Different ordering3 of pivots for 

splitting the nodes of the binary tree are considered in [2], [3], and [4]. 

In the second part of this procedure an ordered compatible is generated for 

each of the starting sets. This is done by scanning the incompatible table 

corresponding to  each starting set in decreasing order of Markowitz number of 

pivots in the starting set. 

The incompatible table for a given starting set, SI, is the original table with those 

rows and columns corresponding to pivots absent from SI eliminated. 

For each starting set, SI, its corresponding incompatible table is scanned. Any 

pivot P,  whose corresponding column in the incompatible table, imptblp,, is null is 

added to the ordered compatible, compset,. In addition any pivot P, for which 

imptblp n compset,= empty is also added to compset, since compset, does not con- 

tain any pivots incompatible with P,. Finally the ordered compatible of maximum 

size and minimum hlarkowitz sum is selected as the elimination set to reduce the 

matrix. The ordered compatiblea corresponding to the eight starting sets above 

are given in Figure 4.3. Any of these sets can be selected to reduce the matrix in 

parallel. Among these ordered compatibfes compset5, compset6, and compset8 are 

of maximum size ( 5 ) .  The set w i t h  minimum Markowitz sum will tend to generate 

fewer fill-ins. Therefore compsetd or cornp8et6, which ever is produced first, will 

be selected as the elimination set .  

1 
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[1,3.4,5,6.7,8,9,10,11] 

Figure 4.2 Partial Binary Tree Search 
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comnpset, = [2.3,7,10], Markowitz sum z- I) 
cornpaet- = [;',3.5.';;, Xtsrkowicz sum = 7 
compact3 = i2,3,9], Markowitt sum = 14 
cornpael, = [2.3,4,3!, M w k o w i t z  sum = A 
r o m p e l ,  ~1.2,3,7,10), Markowitz sum = 0 
compact, = [1,2,3,i,lO!, Markowitz sum 9 
compret ,  (1,2,3,1(3], Markowitt sum = 6 

cumpaeta = [1,2,3:4,9], Markowitz sum - 11 

The Ordered Computibles and Their Markowitz Sum Number 
Figure 4.3 

To produce the starting sets a t  C'LEVEL, processes are assigned to the 

nodes of the part.ial binary tree from the root to level ULEVEL-1. A process can- 

not start. to  split a set un t i l  the set is produced by the parent process. To accom- 

plish this, a lock is assigned to each set from the root t o  ULEVEL-1. The lock is 

initialized to false except for the root set. As soon as a process has completed gen- 

eration of a child set, it sets the lock for the child set to true allowing the next 

process t,o proceed. This is done by selfscheduling processes over the work. Pro- 

duction of starting sets as described above is embodied in the first self-scheduled 

loop in the algorithm below. 
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Procedure Compact  
Global lock( nset); 
Global imptbl (  1,n) set of I ..n; 
Global S(1. .2X m e t ) ;  
Global compsf(  1,neel) set of l..n; 
Local less  set of I . . n ;  
Local tempset  set of l . . n  ; 

n s d  :number of sets from root to CU,EVEL- 1. 

Selfsched DO i s  1, (2 (mE'EL- ' )  - 1) 
wait until lock( i )  true; 
t.ake the next pivot, PI, with Lowest 
Markowitz number to split set ,  : 

produce left set .  set l o c k ( 2 X  i )  to  true; 
produce right set, set l o c k ( 2 x  i+ 1) to true; 

End Selfsched DO 
Barrier 
End barrier 
For each starting set, S,,  produce an ordered compatible, compacti 

presched DO i s  21'LEtEL-l  2Uf-EmL-1 
7 

compset, = e m p t y  

for j =  n down to 1 do 
le88 = s- SI 

begin 
if  ( P,B SI ) t h e n  

begin 
ternpaet = irnptbl, - less 
tempset  = tempset n rompaet,  
i f  ( t e m p e l -  entpty ) then 

cornpeet, = compset, + [PI] 
end 

end 
find a local maximum. 

End Presched DO 

Critical ' max 
find a global maximum 
End critical 

Generation of ordered compatible8 is done by prescheduling processes over 

the sets a t  ULEVEL. Each process is responsible for keeping an updated copy of 

the ordered compatible of maximum size and minimum Markowitz sum it pro- 

s A procew t d e r  the next unassigned value of i se soon aa it is free. This tends to even the work lord 

' Mutual exclusion is accomplished by critical sections, begun by Critical statement m d  ended by 
over processes when the execution time of the loop can vary significantly for diflcrent i values. 

End critical. 
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diicr4. In order to do this, proccwcs c-xeciite 3 section of code to  obtain 3 local 

maximum.  After processes have completed t h e  execut,ion of the prescheduled loop 

body, they execute a critical section to obtain a global maximum (eliminatton set ) .  

Production of K starting sets for a given C'LEVEL takes a constant time. 

For IJLEVEL small and constant c.ompared to n, generation of 

ordered compatibler from starting sets is of order n set intersection and diEerence 

operations. Assuming efficient implementation of the set operations is available, 

O( s e t o p ) ,  the heuristic algorithm has a complexity of O(K.n-setop), where setop 

can be assumed to be constant. Employing NPROC processes will reduce the exe- 

cution time of the second prescheduled loop by l / N P R O C .  Of course, the com- 

plete execution time cannot be improved by l / N P R O C  because of the synchroni- 

zation code used i n  waiting for locks to become true in the barrier code and in the 

critical section to  find 3 global maximum. As LrLEVEL is increased the number of 

parallel processes that. can be effectively used increases but at  the same time the 

complexity of the algorithm wi l l  increase. I t  is important to choose ULEVEL such 

that the amount of parallelism provided by the underlying hardware is effectively 

exploited t o  speed up the execution time and not to add to  its size. 

4.4. Numerical Stability and Trade off Parameters A test for numerical 

stability is done by prescheduling processes over the parallel pivot candidates in 

the elimination set .  Each process searches its pivot column for the maximum 

entry, Vmaz. A pivot is numerically stable i f  

pivot tolerance < lpivot valuel and 

u x I Vmaz I < !pivot value I 
pivot tolerance and u are user defined values which define the desired accuracy. If 

a pivot does not satisfy the test, it is discarded from the elimination set. When no 
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more parallel pivobs exist, i c .  the single pivot.ing loop, if  unstable pivots arc still 

present an accept.able pivot i s  obtained by a complete pivoting strategy. Thus an 

unrylnmetric permutat ion is performed to put the matrix in the new pivot order. 

Note that for matrices in which diagonal pivoting becomes impossible a t  an early 

stage during the decomposition, it is possible to  switch t o  single pivoting code for 

a few steps. During single pivoting steps unsymmetric permutations are possible 

and will change the matrix structure. So parallel steps may become possible 

\ 

again. 

In previous papers we have shown that it is possible to  minimize genera- 

tion of fill-ins significantly by reducing the amount of parallel work slightly 

according to some criteria [2], [3], [4]. Trading off parallelism for fill-in is done 

according to the size of the elimination set and a number of parameters: 

1. Shrinkage parameter: By allowing a small percentage of the elimination set 

t,o be discarded w e  can cont.rol the number of compatible pivots to  a degree 

that does not limit our parallel work by too much. 

2. Upper l imit  parameter: This limit  would allow just enough parallel work to  

keep our parallel processes busy. 

3. Threshold parameter: In  shrinking the size of an elimination set only pivots 

with hlarkowitz number higher than a threshold value in the ordered list of 

pivots may be discarded. Pivots with low Markowitz numbers do not tend to  

generate many fills and need not be discarded. 

If trade off is possible then pivots are discarded from the elimination ret 

asynchronously by parallel processes. Of course it is not necessary t o  use a very 

tight synchronization. I t  is possible to  calculate the number of pivots with the 

highest Markowitz number to  shrink the elimination set and to  let parallel 

i processes to  discard these pivots without synchronization. This approach is more 
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parallel but less flexible on thr * i ze  of t h e  resulfing elimination a r t .  

i 
4.5. Para l l e l  SWPSV Once prrrsllel pivots are determined the  macrix is per- 

muted to  the new pivot order. Thc  permutation information is saved iu procedure 

SWPSV. The destination addre~ses  of parallel pivot candidates are stored such 

that  a t  each parollel step r o a s  and c e l u m u s  are swapped only once. At each step 

indices of pivots in the elimination  et are checked against the upper left hand 

corner of the unreduced matrix. Let nrem be the index of the next row to be 

reduced in the remaining unreduced matrix. Let npiv be the number of pivots in 

the elimination s e t .  I f  i is the index of 3 pivot in  the elimination a e t ,  then if 

i < nrem + npiv - 1 

there is no need to  permute row and column i.  Therefore pivot i can be marked to  

avoid unnecessary permutationq. This is accomplished in a prescheduled do loop 

over the pivots in the elimination Jet.  Having identified the necessary permuta- 

tions, the required information is stored in permutation vectors in a self-scheduled 

loop. Each process obtains the index of a row to  be swapped and updates the 

corresponding entries in the permutation vectors. This is a simple routine and is 

parallelized over the compatible pivots in the elimination set(  npiv) .  The order of 

the sequential routine is O( npiv). since it only involves exchanges of entries in the 

permutation vectors for parallel pivot candidates. 

4.6. Parallel SWPROW The actual permutation of rows and columns is per- 

formed by routines S WPRO I C '  and S WPCOL. Parallelism could be most effective 

if  rows of the parallel pivots are completely permuted first followed by column 

permutations. A single step row-column permutation would involve many changes 

in the row and column lists of the matrix structure and would require tremendous 
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amount of synchronizing (*ode 'Thus SIYPHOIY permutes all the pivot row9 i i ;  

parallel, and S WPCOL pcrinuteu all pivot columns. Barricr 3yactro2izzt iou IS 

necessary in  between the r3lls to the two routines. These routines are syrumet,ric 

in the function they perform, so only SU-PROW is described. 

The rows nnd columns of the pivots in the cfirniriotion set are to be per- 

muted w;t.h others in the remaining matrix such that the matrix is in the pivot 

order with any ordering of elements within an  eliminationset. !n permuting paral- 

lel pivot rows the next row pointer and the row index fields must be updated. So 

after all parallel pivot. rows are swapped with their destination rows, each column 

of the matrix will be in increasing order of row indices obtained from the permuta- 

tion vector. This suggests that we can sort the columns of the matrix according to  

the new ordering given by the permutation vector. Of course not every matrix 

column has to be sorted. Only columns having a nonzero element in any of the 

rows involved in permutation must be sorted. Therefore by constructing a bit 

vector which  is the result of the union of the boolean vectors corresponding to the 

permuting rows (parallel pivot rows and their destination rows), we gather the 

indices of columns bo be sorted. Construction of the boolean vectors for parallel 

pivot rows and their destination rows is done in parallel be prescheduling 

processes over these rows. The union operation is then performed sequentially. 

Note that the union could be done in parallel using a parallel tree sum computa- 

tion method. This would involve much storage for the intermediate results but 

would speed up the operation. 

Next, every column having bit position in the resulting bit vector set must be 

sorted. Each column consists of very few nonzero elements due to  the sparsity of 

the matrix and hence a simple bubble sort can be used efficiently to  sort the 

columns. The sorting of columns are independent operations and can be done 

simultaneously by parallel processes. This is done by self-scheduling the processes 
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over the work. Each proces c~sccules R small critical section to obtain the index 

of the next column to  be sor:cd. The algorithm description follows: 

Procedure SN'PRO It' 

Global brow: array11 . 2 X  r~piw] of a c f s ;  
bit  vectors of rows to  be permuted. 

Global colindez: a e t J ;  t i t  vector of column indices 
to  be sorted. 

Presr hed DO i a  I ,  2 X npiv 
(initialize the boolean vectoru) 
brouj i ) =  0 

End Presched DO 
Barrier 
End barrier 
Presched DO i= 1, 'LX npicr 

obtain index, j ,  of the row to be permuted. 
scan row j and for each nonzero ut& 

add k to b r o u ( i )  
End Presched DO 
Barrier 
col indez=brow(  1)U b r o w ( 2 ) u  . . * U brow(2x npiu) 
End barrier 

Critical n e i t c o l  
get R local column index. j, from rolindez to  be sorted. 
End critical 
if ( j  is a valid index) then 

sortnest: 

bubble sort c o l u m n  j using the information 
from the permutat ion vector. 
go to sort n e x t  

endif 

The sort is O(  n$), where nz is an average number of nonzeros per row or 

column. The sort must be done for all columns in the rolindez vector. This 

number is usually a multiple of n:, say Knz, and in the worst case could be n, the 

order of the matrix. It also involves the set operations union and the next element 

from colindez which is implementation dependent. The next element operation is 

performed within the loop and can be done in O(1). Thus on the average the 

number of operations in this routine is of order of: 

o( ~ d )  
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I f  K . n z  parallel processes exist,, SWPRO W can be done in time O [ n t ) ? .  

4.7. Parallel r educe  The numerical decomposition and insertion of fill-ins for 

the elimination set is parallelized by self-scheduling processes as follows: 

The reduction of each row for a pivot in  the elimination aet is performed 

by a parallel process. I f  no more rows are left to be reduced for this pivot, the 

reduction process for the  next row can be started by parallel processes looking for 

more work. The logic to do this is contained within a critical section of code. A 

process obtains a local pointer to the next row having a nonzero in the pivot 

column it is processing, advances the global pointer and exits the critical section. 

If no more rows are left to  be updated for the pivot under consideration, the pro- 

cess advances a global pointer to the next pivot in the elimination set and obtains 

the next row pointer for the new pivot in the same manner and exits the critical 

section. Thus processes work in parallel over rows of a single pivot first and over 

the parallel pivot candidates in the elimination aet next. 

Each process is responsible for dividing the nonzero element in the pivot 

column by the pivot and subtracting a multiple of the pivot row from the r o w ,  j ,  

being updated. The process must also check for a possible fill-in and insert it if  

necessary. The search for a possible fill-in must be done atomically so that paral- 

lel processes do not try to insert the same element in the same position w i t h  

different values. Means must be provided to allow only one process to  insert a 

fill-in alk and others to  update the element after it is inserted. This can be done 

by locking the row j and column k of the matrix such that it can only be searched 

by one process at a time. The locking of a row and column is done by a critical 

section on elements of two asynchronous arrays, one for rows and one for columns. 

Any two shared arrays, for example nojr and nojc ,  that  are not used throughout 
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t t11s process can be risen far this purpose. Of course only one element can be 

Inserted in  the m a t r i x  5tructrire 31 :\ time since the insertion causes changes in the 

pointer st riicture for rows a ~ d  columns other than j and k alone. It is important 

to  note that the probability of searching for the same element by more than one 

process a t  the s3me time is very low The synchronization described above is 

necessary for correct solution and does not increase the execution time by much. 

'The updating of an element must also be done atomically by processes. Again the 

probability of more than one process trying to  simultaneously update the same 

element is low. This synchronization c a n  be done by simple scoreboarding which 

m u s t  be available in machines matching our computational model. 
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Procedure reduce 

Barrier 
ii - index of the first pivcit i i i  tho ordered ma~rix.  
End harrier 

Critical nett  

c getwork: 

(get next parallel work! 
i s i i  l o c d  pivot index 
(get a local row index to Le reduced) 

j- nettrow in  pivot columc ii 
i f ( i  not valid) and (more pivots j then 
begin 

i= ii+ I ; advance to hhe next pivot and update 
ii= i 
goto local; get the w x t .  row. 

local: 

, the glob31 pivot pointer. 

endif 
update global nertrow pointer information. 

End critical 
if( j valid) then 
begin 

uJI = uJl/uII; 
scan pivot row i and for each n,k:  

(check for a possible fill-in) 
(lock row i and column k 1 
Critical nofr(j)  
Critical n o f c ( k )  

divide by pivot 

i f (  QJk. not in matrix) then 
Critical insert 
insert the element 
End critical 

End critical 
End critical 

atomically update u,k 
u j k =  - 
goto getwork 

endif 

Reduction of the matrix for a single pivot requires a complete scan over 

the matrix which can be done in time NZ. For npiv pivots the time would be pro- 

portional to  npiv-NZ. NZ changes as fill-ins are encountered or a3 the matrix gets 

smaller due to the reduction. DUB [.I] reports that over a wide variety of matrices, 

the number of arithmetic operat ions performed has been empirically observed to  

be about 7*/4n where T is the number of nonzeros in the decomposed form. The 

value of T is generally not known a priori. Experience has shown that a value 
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5/',?N% is a *atisfactory e5tiruat.e for T although an esbinate of ordcr nlog n is more 

realivtic for problems arising from PDEs in t w o  dimensions. 

5. Implementation Results The program IS implemented for the HEP (Hetero- 

geneous Element Processor) pipelined shared-memory computer built by Deneicor, 

Inc. [ E ] .  The resuits prcscnt.ed here are on a single PEM (Process Execution 

Module). Thc execution pipeline on the IiEP has eight steps. In the HEP the 

degree of simultaneous execution is limited by the length of the various pipelines 

and may be characterized by an average pipeline length. Thus on a single PEM a 

program may be expected to  speed up by no more than 7.5 to  9.5 over single 

stream execution. The LU Decomposition program has also been simulated on a 

Vax 11/780 and tested on many application matrices arising from electronic cir- 

cuits and structural analysis producing successful results [2], [3), 141. Here we 

represent the timing results of running the program over a 1 4 1  by 144 matrix from 

the circuit of an 8-bit f u l l  adder and employing different values for trade off 

parameters. Figure 5.1 represents the execution time of LU Decompoaition pro- 

gram for different numbers of processes from 1 to 25. The result is for the case 

when maximum parallelism is used. For N P R O C = l ,  the matrix is completely 

reduced in 10  parallel steps. The number of compatible pivots a t  each step is 7 2 ,  

2 5 ,  16, 11, 6 ,  5 ,  3, 2,  2, and 1 respectively. Note that  in the first step half of the 

matrix is reduced in parallel. The execution time decreases with an increase in the 

number of processes up to  N P R O C - 1 1 .  In fact there is U N P R O C  reduction in 

execution time for small values of N P R O C  as new processes make efficient use of 

the execution pipeline. This decrease in execution time bottoms out as the pipe- 

line becomes full. The slope of the linearly rising tail of the curve indicates the 

length of time spent in critical sections in various points in the program. A com- 
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plete model for analysis of parallel programs can be found in  (2.31. Defining the 

speed u p  to be: 

T(1) 
T( Y P R O C )  

S a  

where T (  1) is the time to execute the program with one process and T (  "VPROC') is 

the same time using 'VPROC' processes. Then a speed up of 4.82 is obtained for 11 

processes. Note that t,his is not speed up measured with respect to the best 

sequential algorithm, but only gives insight to the parallelism in this program. 

For a small number of processes, execution time versus number NPROC 

of processes can be represented as: 

C? T ( N P R 0 C )  = C , +  N P R O C  

where G, represents the sequential portion of the work and C, the parallel por- 

tion. A simple least squares fit to determine C, and C, is applied to a linear por- 

tion of the execution time versus N P R O C  curve to  estimate the degree of parallel- 

ism. This analysis shows that the  code is 87% parallel. Figure 5.2 shows the exe- 

cution time versus X P R O C  for individual routines. As can be seen there is a 

sharp increase in  the slope of the sort curve for large NPROC which  indicates 

parallel processev spend more time in the critical section than doing useful parallel 

work. Of course a reason for this behavior is the small value of N, order of the 

matrix. As N increases the slope becomes smaller. A speed up of 3.3 for 8 

processes is obtained for the sort. The degree of parallelism for this routine is 

58%. 

For the C o m p a c t  routine speed up is 5.7 for 10 processes, and the code is 93% 

parallel. Here the value of ULEVEL is 4, so there are 10 starting sets for which an 

ordered compotibfe must be produced in parallel. Therefore every time number of 

active processes divides 10 evenly a sharp decrease in execution time is observed. 

Speed ups for reduce and SWPROW are 4.4 for 11 processes and 0.5 for 12 
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. .- 

procrqws rcrpectively. T l w  drgn 1. of p:ir:~lIvliqin for t,tlcsc t w o  rc,iitint.+ WI- 8 j";, 

and 93% respectively. Our nuiricricai results about number of  availabie paraiic! 

pivots indicate the existence of L ~ Y Q  parsilel operations snd it  is clear that by 

moving to comp1ltei.s with more parallel units or PEMs in the cast? of HEP a 

higher degree of parallelisoi can be achieved. 

The program is noncletermirlistic when executed in parallel. In  many cases 

there are several sets of cquai m a x i m u m  size and minimum Markowitz sum. 

Depending on the number of processes and their relative speeds, one of the candi- 

date ordered compatibles wil l  be selected as the elimination set .  Thus diflerent 

results are produced. The number of fill-ins generated for single stream execution 

is 280. For different values of NPROC this number is in the range of 89% to 

103% of the fill-ins produced sequentially. 

Table 5.1  shows the result of  running the program on the same matrix when trade 

off parameters are used. The values of parameters for this case are given below: 

Threshold 1/3 

Shrinkage Parameter 30% 

Upper Limit  25 

CrL E \'EL 'I 

Table 5.1 

Routine NPROC Speed up 

LU Decompoae 9 5.81 

Bateher 7 3.5 

Com pa et 18 6.1 

SWPROW 14 0.54 

reduce 9 4.15 



The higher speed up indicates that by employing the above paramcters a better 

balance between number of compatible pivots generated at  different steps is 

achieved. A reduction of 23% in 811 iu  obtained as the result of the above parame- 

ter variations which compares reasonably w i t h  results from the best sequential 

program (100). The fill-in can further be decreased by assigning different values to 

trade off parameters. 

The results of running the program on a 505 by 505 matrix produced from 

SPAR, a structural analysis program [24] is given in Figure 5.3 and 5.4. In the 

NEP, for every new process a local stack area is allocated. This area depends on 

the amount of local storage and some other system parameters. Due to  the limited 

size of the available memory the program could only be run on this matrix for up 

to 7 processes. The trade off parameters for this run have the following values: 

Threshold 213 

Shrinkage Parameter 40% 

Upper Limit 00 

UL E VEL 4 

Using a least squares fit the degree of parallelism for each routine is summarized in 

Table 5.2. 

Table 5.2 
_- 

Routine Degree of Parallelism 

LU Decompose 95% 

Botcher 93.37% 

Compset 91.45% 

SWPROW 92.22% 

reduce 85.44% 
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The 93% parallelism from t,he sort indicates that ,  for large values of 'C', parallel 

processes spend more time perfarming parallel operations than in the critical sec- 

tion. 

Figure 5.4 compares the total execution time spent in routines to  Bnd the parallel 

pivoting candidates and execution time of the rest of the program for LU dccom- 

position. As can be verified from thib figure the time spent to  Bnd the parallel 

pivots is much less than the time to  perform the decomposition. This difference 

increases as the size of the matrix becomes larger, verifying the advantage of 

parallel pivoting. 

6. Conclusion A set of parallel algorithms for performing LU decomposition of 

general unsymmetric sparse matrices for shared-memory MIMD computers has 

been presented. The sparse L U  decomposition technique employs a parallel pivot- 

ing strategy to solve the problem of having enough parallelism in sparse matrices. 

The main features of the heuristic algorithm can be summarized as follows: 

-It can ident,ify a good set of parallel pivots in  linear time. 

-It is 3 stepwise algorithm and can be applied to  any submatrix of the ori- 

ginal matrix. Thus it is not a preordering of the sparse matrix and is applied 

dynamically as the decomposition proceeds. 

-Pivots can be tested for numerical stability and unsymmetric permuta- 

tions can be performed if necessary. 

-Trade off between parallelism and fill-in is possible under several program 

controlled parameters. 

-The information produced by the algorithm can be stored to  decompose 

structurally identical matrices. 
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We have presented the parallel reduction combined wit.h parallel pivoting 

t e c l ~ u i c ~ u e ,  control over the gcoc-ration of fills and check for numerical stability, all 

done in parallel with work being diqtribiited over the active processes. The pro- 

gram verifies that  it is actually possible to do parallel pivoting in sparse matrices 

on multiprocessors and take advantage of the existing parallelism in the problem 

and in the hardware. The timing aualysis of the routines indicate that every rou- 

tine has been eflectively parallelized. The small slope in the execution time versus 

number of processes of L Ir Decornpoaition program which represents the amount 

of synchronization overhead verifies the effectiveness of parallelization and 

machine utilization. 
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