72 research outputs found

    Expression of a human cartilage procollagen gene (COL2A1) in mouse 3T3 cells.

    Get PDF
    Expression in a recombinant system has been difficult to obtain for any of the major fibrillar collagens that require processing by eight or more post-translational enzymes. Here, two DNA constructs were designed so that the promoter region of the gene for the pro-alpha 1(I) chain of human type I procollagen drove expression of the human type II procollagen gene in mouse NIH 3T3 cells, a culture line that normally synthesizes type I procollagen but not any cartilage-specific protein such as type II procollagen. Both constructs were expressed as both mRNA and protein. In clones expressing the construct at high levels, the steady-state levels of mRNA and the production of type II procollagen were comparable to the mRNA levels and production of type I procollagen from the endogenous mouse genes. Comparison of clones containing the two constructs demonstrated that sequences extending 80 base pairs beyond the major polyadenylation signal of the gene are not in themselves sufficient for correct termination and 3\u27 processing of RNA transcripts. The results strongly suggest that specific sequences present in a downstream 3.5-kilobase SphI/SphI fragment determine the termination of the transcription. Of special importance is that the system will make it possible to examine the consequences of mutations in the human type II procollagen gene on the processing of RNA transcripts and on the functional properties of the protein simply by using the genomic DNA from leukocytes or other non-cartilaginous sources

    Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis

    Get PDF
    INTRODUCTION: The objective of this study was to investigate the relationship of the IL-6 promoter variants G-597A, G-572C and G-174C (rs1800797, rs1800796 and rs1800795, respectively), which have been shown to affect both the transcription and secretion of IL-6, to symptomatic distal interphalangeal (DIP) osteoarthritis (OA). METHODS: A total of 535 women aged 45 to 63 years were included. Radiographs of both hands were taken and each DIP joint was evaluated (grade 0 to 4) for the presence of OA. Information on symptoms (pain, tenderness) in each joint was collected by using a self-administered questionnaire. Symptomatic DIP OA was defined by the presence of both radiographic findings of grade 2 or more and symptoms in at least two DIP joints, and symmetrical DIP OA by the presence of radiographic findings of grade 2 or more in at least one symmetrical pair of DIP joints. Common polymorphic loci in the IL-6 gene were amplified and the promoter haplotypes were reconstructed from genotype data with the PHASE program. Logistic regression analysis was used to examine the association between the IL-6 genotypes/diplotypes and the DIP OA outcome. RESULTS: The G alleles of two promoter single nucleotide polymorphisms (SNPs) G-597A and G-174C were more common among the subjects with symptomatic DIP OA than among those with no disease (P = 0.020 and 0.024, corrected for multiple testing). In addition, the carriage of at least one G allele in these positions increased the risk of disease (P = 0.006 and P = 0.008, respectively). Carrying a haplotype with the G allele in all three promoter SNPs increased the risk of symptomatic DIP OA more than fourfold (odds ratio (OR) 4.45, P = 0.001). Carriage of the G-G diplotype indicated an increased risk of both symmetrical DIP OA (OR 1.52, 95% confidence interval 1.01 to 2.28) and symptomatic DIP OA (OR 3.67, 95% confidence interval 1.50 to 9.00). CONCLUSION: The present study showed that the presence of G alleles at common IL-6 polymorphic promoter loci was associated with the more severe DIP OA outcomes, symmetrical and symptomatic

    The Collagen V Homotrimer [α1(V)]3 Production Is Unexpectedly Favored over the Heterotrimer [α1(V)]2α2(V) in Recombinant Expression Systems

    Get PDF
    Collagen V, a fibrillar collagen with important functions in tissues, assembles into distinct chain associations. The most abundant and ubiquitous molecular form is the heterotrimer [α1(V)]2α2(V). In the attempt to produce high levels of recombinant collagen V heterotrimer for biomedical device uses, and to identify key factors that drive heterotrimeric chain association, several cell expression systems (yeast, insect, and mammalian cells) have been assayed by cotransfecting the human proα1(V) and proα2(V) chain cDNAs. Suprisingly, in all recombinant expression systems, the formation of [α1(V)]3 homotrimers was considerably favored over the heterotrimer. In addition, pepsin-sensitive proα2(V) chains were found in HEK-293 cell media indicating that these cells lack quality control proteins preventing collagen monomer secretion. Additional transfection with Hsp47 cDNA, encoding the collagen-specific chaperone Hsp47, did not increase heterotrimer production. Double immunofluorescence with antibodies against collagen V α-chains showed that, contrary to fibroblasts, collagen V α-chains did not colocalized intracellularly in transfected cells. Monensin treatment had no effect on the heterotrimer production. The heterotrimer production seems to require specific machinery proteins, which are not endogenously expressed in the expression systems. The different constructs and transfected cells we have generated represent useful tools to further investigate the mechanisms of collagen trimer assembly

    A novel mutation in the matrix metallopeptidase 2 coding gene associated with intrafamilial variability of multicentric osteolysis, nodulosis, and arthropathy

    Get PDF
    Background MONA, which stands for a spectrum of Multicentric Osteolysis, subcutaneous Nodulosis, and Athropathia, is an ultra rare autosomal recessive disorder caused by mutations in the matrix metallopeptidase 2 (MMP2) gene. To date only 44 individuals, carrying 22 different mutations have been reported. Here we report on two brothers with identical homozygous MMP2 gene mutations, but with clearly different phenotypes. Methods Genomic DNA was isolated from the affected brothers and the parents. An iliac crest bone biopsy was taken from the younger patient (index case). The level of matrix metallopeptidase 2 enzyme (MMP2) in serum and synovial fluid of the younger patient was analyzed using gelatin zymography. Results The DNA analysis revealed a homozygous c.1188C>A transversion on exon 8 of the gene. The affected brothers had the same homozygous variant and the parents were heterozygous to this variant. This variant has been reported as a compound heterozygous mutation on one individual resulting in scleroderma like skin thickening. Bone histomorphometry indicated increased trabecular bone remodeling and turnover. The zymography revealed that the level of MMP2 was completely nonmeasurable in the serum and only a minor gelatinolytic protein band of about similar molecular weight as MMP2 was found in the synovial fluid. Conclusions Both the age at the onset and the phenotypic severity of the syndrome in these two brothers were different despite identical genotypes. The younger patients had corneal opacities leading to deteriorating visual acuity. For the first time in this disease, opacities were successfully treated with corneal transplantations.Peer reviewe

    Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Get PDF
    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes

    Genetic susceptibility of intervertebral disc degeneration among young Finnish adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration (DD) is a common condition that progresses with aging. Although the events leading to DD are not well understood, a significant genetic influence has been found. This study was undertaken to assess the association between relevant candidate gene polymorphisms and moderate DD in a well-defined and characterized cohort of young adults. Focusing on young age can be valuable in determining genetic predisposition to DD.</p> <p>Methods</p> <p>We investigated the associations of existing candidate genes for DD among 538 young adults with a mean age of 19 belonging to the 1986 Northern Finland Birth Cohort. Nineteen single nucleotide polymorphisms (SNP) in 16 genes were genotyped. We evaluated lumbar DD using the modified Pfirrmann classification and a 1.5-T magnetic resonance scanner for imaging.</p> <p>Results</p> <p>Of the 538 individuals studied, 46% had no degeneration, while 54% had DD and 51% of these had moderate DD. The risk of DD was significantly higher in subjects with an allele G of <it>IL6 </it>SNPs rs1800795 (OR 1.45, 95% CI 1.07-1.96) and rs1800797 (OR 1.37, 95% CI 1.02-1.85) in the additive inheritance model. The role of <it>IL6 </it>was further supported by the haplotype analysis, which resulted in an association between the GGG haplotype (SNPs rs1800797, rs1800796 and rs1800795) and DD with an OR of 1.51 (95% CI 1.11-2.04). In addition, we observed an association between DD and two other polymorphisms, <it>SKT </it>rs16924573 (OR 0.27 95% CI 0.07-0.96) and <it>CILP </it>rs2073711 in women (OR 2.04, 95% CI 1.07-3.89).</p> <p>Conclusion</p> <p>Our results indicate that <it>IL6</it>, <it>SKT </it>and <it>CILP </it>are involved in the etiology of DD among young adults.</p

    Effect of remdesivir post hospitalization for COVID-19 infection from the randomized SOLIDARITY Finland trial

    Get PDF
    We report the first long-term follow-up of a randomized trial (NCT04978259) addressing the effects of remdesivir on recovery (primary outcome) and other patient-important outcomes one year after hospitalization resulting from COVID-19. Of the 208 patients recruited from 11 Finnish hospitals, 198 survived, of whom 181 (92%) completed follow-up. At one year, self-reported recovery occurred in 85% in remdesivir and 86% in standard of care (SoC) (RR 0.94, 95% CI 0.47-1.90). We infer no convincing difference between remdesivir and SoC in quality of life or symptom outcomes (p > 0.05). Of the 21 potential long-COVID symptoms, patients reported moderate/major bother from fatigue (26%), joint pain (22%), and problems with memory (19%) and attention/concentration (18%). In conclusion, after a one-year follow-up of hospitalized patients, one in six reported they had not recovered well from COVID-19. Our results provide no convincing evidence of remdesivir benefit, but wide confidence intervals included possible benefit and harm.Peer reviewe

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe
    corecore