486 research outputs found
Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age
Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection
Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age
Abstract Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection
Whole transcriptome analysis of bovine mammary progenitor cells by P-Cadherin enrichment as a marker in the mammary cell hierarchy
Adult bovine mammary stem cells possess the ability to regenerate in vivo clonal outgrowths that
mimic functional alveoli. Commonly available techniques that involve immunophenotype-based
cell sorting yield cell fractions that are moderately enriched, far from being highly purified. Primary
bovine mammary epithelial cells segregated in four different populations according to the expression
of P-Cadherin and CD49f. Sorted cells from each fraction were tested for the presence of lineagerestricted
progenitors and stem cells. Only cells from the CD49fhigh/
P-C adherinneg subpopulation were
able to give rise to both luminal- and myoepithelial-restricted colonies in vitro and generate organized
outgrowths in vivo, which are hallmarks of stem cell activity. After whole transcriptome analysis, we
found gene clusters to be differentially enriched that relate to cell-to-cell communication, metabolic
processes, proliferation, migration and morphogenesis. When we analyzed only the genes that were
differentially expressed in the stem cell enriched fraction, clusters of downregulated genes were
related to proliferation, while among the upregulated expression, cluster of genes related to cell
adhesion, migration and cytoskeleton organization were observed. Our results show that P-C adherin
separates mammary subpopulations differentially in progenitor cells or mammary stem cells. Further
we provide a comprehensive observation of the gene expression differences among these cell
populations which reinforces the assumption that bovine mammary stem cells are typically quiescent
Metaverse for Wireless Systems: Architecture, Advances, Standardization, and Open Challenges
The growing landscape of emerging wireless applications is a key driver
toward the development of novel wireless system designs. Such a design can be
based on the metaverse that uses a virtual model of the physical world systems
along with other schemes/technologies (e.g., optimization theory, machine
learning, and blockchain). A metaverse using a virtual model performs proactive
intelligent analytics prior to a user request for efficient management of the
wireless system resources. Additionally, a metaverse will enable
self-sustainability to operate wireless systems with the least possible
intervention from network operators. Although the metaverse can offer many
benefits, it faces some challenges as well. Therefore, in this tutorial, we
discuss the role of a metaverse in enabling wireless applications. We present
an overview, key enablers, design aspects (i.e., metaverse for wireless and
wireless for metaverse), and a novel high-level architecture of metaverse-based
wireless systems. We discuss metaverse management, reliability, and security of
the metaverse-based system. Furthermore, we discuss recent advances and
standardization of metaverse-enabled wireless system. Finally, we outline open
challenges and present possible solutions
Diffusive Spreading of Chainlike Molecules on Surfaces
We study the diffusion and submonolayer spreading of chainlike molecules on
surfaces. Using the fluctuating bond model we extract the collective and tracer
diffusion coefficients D_c and D_t with a variety of methods. We show that
D_c(theta) has unusual behavior as a function of the coverage theta. It first
increases but after a maximum goes to zero as theta go to one. We show that the
increase is due to entropic repulsion that leads to steep density profiles for
spreading droplets seen in experiments. We also develop an analytic model for
D_c(theta) which agrees well with the simulations.Comment: 3 pages, RevTeX, 4 postscript figures, to appear in Phys. Rev.
Letters (1996
Renormalization group study of one-dimensional systems with roughening transitions
A recently introduced real space renormalization group technique, developed
for the analysis of processes in the Kardar-Parisi-Zhang universality class, is
generalized and tested by applying it to a different family of surface growth
processes.
In particular, we consider a growth model exhibiting a rich phenomenology
even in one dimension. It has four different phases and a directed percolation
related roughening transition. The renormalization method reproduces extremely
well all the phase diagram, the roughness exponents in all the phases and the
separatrix among them. This proves the versatility of the method and elucidates
interesting physical mechanisms.Comment: Submitted to Phys. Rev.
- …