13 research outputs found

    Mitigation of packet loss with end-to-end delay in wireless body area network applications

    Get PDF
    The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN

    Proposed system for data security in distributed computing in using ‎triple data encryption standard and ‎Rivest Shamir ‎Adlemen

    Get PDF
    Cloud computing is considered a distributed computing paradigm in which resources ‎are ‎provided as services. In cloud computing, the ‎applications do not run ‎from a user’s personal computer but are run and stored on distributed ‎servers on the Internet. The ‎resources of the cloud infrastructures are shared on cloud ‎computing on the Internet in the open ‎environment. This increases the security problems in ‎security such as data confidentiality, data ‎integrity and data availability, so the solution of such ‎problems are conducted by adopting data ‎encryption is very important for securing users data. ‎In this paper, a comparative ‎study is done between the two security algorithms on a cloud ‎platform called eyeOS. From the ‎comparative study it was found that the Rivest Shamir ‎Adlemen ‎(3kRSA) algorithm ‎outperforms that triple data encryption standard (3DES) algorithm with ‎respect to the complexity, and output bytes. The main ‎drawback of the 3kRSA algorithm is its ‎computation time, while 3DES is faster than that ‎‎3kRSA. This is useful for storing large amounts of ‎data used in the cloud computing, the key ‎distribution and authentication of the asymmetric ‎encryption, speed, data integrity and data ‎confidentiality of the symmetric encryption are also ‎important also it enables to execute ‎required computations on this encrypted data.

    Survey on encode biometric data for transmission in wireless communication networks

    Get PDF
    The aim of this research survey is to review an enhanced model supported by artificial intelligence to encode biometric data for transmission in wireless communication networks can be tricky as performance decreases with increasing size due to interference, especially if channels and network topology are not selected carefully beforehand. Additionally, network dissociations may occur easily if crucial links fail as redundancy is neglected for signal transmission. Therefore, we present several algorithms and its implementation which addresses this problem by finding a network topology and channel assignment that minimizes interference and thus allows a deployment to increase its throughput performance by utilizing more bandwidth in the local spectrum by reducing coverage as well as connectivity issues in multiple AI-based techniques. Our evaluation survey shows an increase in throughput performance of up to multiple times or more compared to a baseline scenario where an optimization has not taken place and only one channel for the whole network is used with AI-based techniques. Furthermore, our solution also provides a robust signal transmission which tackles the issue of network partition for coverage and for single link failures by using airborne wireless network. The highest end-to-end connectivity stands at 10 Mbps data rate with a maximum propagation distance of several kilometers. The transmission in wireless network coverage depicted with several signal transmission data rate with 10 Mbps as it has lowest coverage issue with moderate range of propagation distance using enhanced model to encode biometric data for transmission in wireless communication

    A New Routing Protocols For Reducing Path Loss In Wireless Body Area Network (WBAN

    Get PDF
    In view of the ever-aging society, recent developments in the field of electronics and telecommunications have witnessed the interest in developing an integrated circuit of enhanced surveillance sensors that can be worn and have an ease of movement to monitor vital signs. The main tasks of these electronic devices are collecting physiological information from the patient's body, sending the information to the medical center via a secure way and ensuring the arrival of this information in a reliable way without any loss of data. This paper proposed a protocol in Wireless Body Area Network (WBAN) to solve the problem of path loss in WBAN. For this purpose, we depend on three sets of scenario applied in OMNET++ environment. The results of proposed solution were compared with RSS path loss factor using three delay and data rate parameters

    Modified RSA-based algorithm: a double secure approach

    Get PDF
    Security algorithms like RSA are becoming increasingly important for communications to provide companies, organizations, and users around the world, secure applications who rely heavily on them in their daily work. Security algorithms use different acquaintances among companies which might belong to various countries or even cities. Such data should essentially be encrypted to make sure that there is security in transportation. Thus, the current research paper leads to the novel system of security for the safe transfer of data. This paper examines the general principles of encryption and focuses on the development of RSA and the complexity of the encryption key so that it becomes more secure in the applications used. In this project, we will work on the RSA algorithm by adding some complexity to the 3keys (3k). This addition will increase the security and complexity of the algorithm's speed while maintaining encryption and decryption time. The paper also presents an approach by means of public key encryption to enhance cryptographic security. Moreover, double security is provided by the algorithm of RSA. This novel RSA algorithm was investigated in MATLAB. Numerical results for the various parameters such as Mean Square Error (MSE), correlation and Bit Error Ratio (BER) were implemented for the encryption of the message. The experimental results demonstrated that the proposed algorithm for 3 keys has small error rate in the retrieval of the encoded text

    Optimizing multi-antenna M-MIMO DM communication systems with advanced linearization techniques for RF front-end nonlinearity compensation in a comprehensive design and performance evaluation study

    Get PDF
    The study presented in this research focuses on linearization strategies for compensating for nonlinearity in RF front ends in multi-antenna M-MIMO OFDM communication systems. The study includes the design and evaluation of techniques such as analogue pre-distortion (APD), crest factor reduction (CFR), multi-antenna clipping noise cancellation (M-CNC), and multi-clipping noise cancellation (MCNC). Nonlinearities in RF front ends can cause signal distortion, leading to reduced system performance. To address this issue, various linearization methods have been proposed. This research examines the impact of antenna correlation on power amplifier efficiency and bit error rate (BER) of transmissions using these methods. Simulation studies conducted under high signal-to-noise ratio (SNR) regimes reveal that M-CNC and MCNC approaches offer significant improvement in BER performance and PA efficiency compared to other techniques. Additionally, the study explores the influence of clipping level and antenna correlation on the effectiveness of these methods. The findings suggest that appropriate linearization strategies should be selected based on factors such as the number of antennas, SNR, and clipping level of the system

    Enhanced QoS Routing Protocol for an Unmanned Ground Vehicle, Based on the ACO Approach

    No full text
    Improving models for managing the networks of firefighting unmanned ground vehicles in crowded areas, as a recommendation system (RS), represented a difficult challenge. This challenge comes from the peculiarities of these types of networks. These networks are distinguished by the network coverage area size, frequent network connection failures, and quick network structure changes. The research aims to improve the communication network of self-driving firefighting unmanned ground vehicles by determining the best routing track to the desired fire area. The suggested new model intends to improve the RS regarding the optimum tracking route for firefighting unmanned ground vehicles by employing the ant colony optimization technique. This optimization method represents one of the swarm theories utilized in vehicles ad–hoc networks and social networks. According to the results, the proposed model can enhance the navigation of self-driving firefighting unmanned ground vehicles towards the fire region, allowing firefighting unmanned ground vehicles to take the shortest routes possible, while avoiding closed roads and traffic accidents. This study aids in the control and management of ad–hoc vehicle networks, vehicles of everything, and the internet of things

    Efficient time-series forecasting of nuclear reactions using swarm intelligence algorithms

    Get PDF
    In this research paper, we focused on the developing a secure and efficient time-series forecasting of nuclear reactions using swarm intelligence (SI) algorithm. Nuclear radioactive management and efficient time series for casting of nuclear reactions is a problem to be addressed if nuclear power is to deliver a major part of our energy consumption. This problem explains how SI processing techniques can be used to automate accurate nuclear reaction forecasting. The goal of the study was to use swarm analysis to understand patterns and reactions in the dataset while forecasting nuclear reactions using swarm intelligence. The results obtained by training the SI algorithm for longer periods of time for predicting the efficient time series events of nuclear reactions with 94.58 percent accuracy, which is higher than the deep convolution neural networks (DCNNs) 93% accuracy for all predictions, such as the number of active reactions, to see how the results can improve. Our earliest research focused on determining the best settings and preprocessing for working with a certain nuclear reaction, such as fusion and fusion task: forecasting the time series as the reactions took 0-500 ticks being trained on 300 epoch

    A secure sharing control framework supporting elastic mobile cloud computingA secure sharing control framework supporting elastic mobile cloud computing

    No full text
    Inelastic mobile cloud computing (EMCC), mobile devices migrate some computing tasks to the cloud for execution according to current needs and seamlessly and transparently use cloud resources to enhance their functions. First, based on the summary of existing EMCC schemes, a generic EMCC framework is abstracted; it is pointed out that the migration of sensitive modules in the EMCC program can bring security risks such as privacy leakage and information flow hijacking to EMCC; then, a generic framework of elastic mobile cloud computing that incorporates risk management is designed, which regards security risks as a cost of EMCC and ensures that the use of EMCC is. Finally, it is pointed out that the difficulty of risk management lies in risk quantification and sensitive module labeling. In this regard, risk quantification algorithms are designed, an automatic annotation tool for sensitive modules of Android programs is implemented, and the accuracy of the automatic annotation is demonstrated through experiments
    corecore