22 research outputs found

    Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at \sqrt{s} = 8 TeV

    Get PDF
    The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb^{-1} for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F_{0}), left-handed (F_{L}), or right-handed (F_{R}) polarizations. The resulting combined measurements of the polarization fractions are F0 = 0.693 ± 0.014 and FL = 0.315 ± 0.011. The fraction F_{R} is calculated from the unitarity constraint to be F_{R} = −0.008 ± 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F_{o} (F_{L}) with respect to the most precise single measurement. A limit on anomalous right-handed vector (VR), and left- and right-handed tensor (g_{L}, g_{R})tWb couplings is set while fixing all others to their standard model values. The allowed regions are [−0.11, 0.16] for V_{R}, [−0.08, 0.05] for g_{L}, and [−0.04, 0.02] for g_{R}, at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived

    LAUROC1 : Liquid Argon Upgrade Read Out Chip

    No full text
    International audienceThe analog front-end readout electronics of the ATLAS Liquid Argon (LAr) Calorimeter will be replaced by a single chip for the phase II of the high luminosity Large Hadron Collider at CERN. The cornerstone of the circuit is the preamplifier which is very demanding in terms of low noise (0.4 nV/√Hz), large dynamic range (up to 10 mA, 16 bits) and precise input impedance (25 or 50 Ohms) to terminate the cables from the detector. LAUROC1 ASIC integrates an innovative architecture to fulfil these requirements. Detailed measurements are presented
    corecore