24 research outputs found

    Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement

    Get PDF
    Copyright: © 2021 by the authors. This research presents new insights into the utilisation of waste glass powder in concrete pavements. Two different types of glass powder were used as a partial replacement for sand: 10% neat glass powder (untreated) and 10% silane-treated glass powder. The interfacial bonding properties, physical properties, and mechanical properties of concrete pavement were assessed at 7 and 28 days. Results exposed a reduction of 5% and 2% in the compressive and flexural strengths, respectively, and an increase of 15% in water absorption after the addition of neat glass powder to concrete after 7 days of curing. This is due to weak interfacial bonding between the glass powder and cementitious matrix. However, the incorporation of silane-coated glass powder led to an increase in the compressive and flexural strengths by more than 22% and 28%, respectively, and reduced the water absorption of concrete by 8%, due to the coupling functionality of silane. After 28 days of curing, the compressive strength of concrete increased by 15% and 22% after the addition of neat glass powder and silane-treated glass powder, respectively. In addition, water absorption dropped by 5% and 7% after the incorporation of neat glass powder and silane-treated glass powder

    Optimum mix design for internally integrated concrete with crystallising protective material

    Get PDF
    In this research, a silica-based crystallizing protective material was integrated into a fresh concrete mix to evaluate its efficacy in reducing water absorption while preserving the compressive strength level of the mixture. An optimum concrete mix design was determined, by producing several concrete mixes with different water-to-cement ratios (w/c) of 0.32, 0.37, 0.40, and 0.46, and treated with 2% and 4% of the crystallizing admixture. Water absorption and the mechanical properties of the treated and control mixes were measured, using the initial surface absorption test (ISAT) and the compressive strength and the flexural strength tests, respectively. Results showed that it is possible to obtain a water-resistant concrete without compromising its compressive strength if the right w/c ratio was used and the proper dosage of the crystallizing material was added. In addition, results revealed that treatment is beneficial only in the case of producing concrete with low w/c ratios of 0.32 and 0.37 and treated with crystallizing material. The compressive strength can increase up to 42% and with a significant drop in water absorption reaches 65%. Treated concrete was analyzed thoroughly under the scanning electron microscope (SEM) and X-ray diffraction (XRD) instrument to show the development of crystals with time and their interaction with the concrete mix

    Upcycling end-of-life bricks in high-performance one-part alkali-activated materials

    Get PDF
    One-part alkali-activated materials (AAMs) can preserve natural resources and lower embodied carbon of the built environment by accommodating various wastes, industrial by-products, and end-of-life materials in their composition. This study investigates the feasibility of using end-of-life bricks in two physical states, powder and aggregate, to partially replace fly ash precursor and natural aggregate in AAMs, respectively. The mechanical characteristics, microstructure, water absorption, freeze-thaw and fire resistance of the modified AAMs were evaluated. The effect of adding different ratios of nano graphite platelets was also investigated. Results showed that brick-based one-part AAMs can achieve mechanical properties, pore structure, water absorption and freeze-thaw resistance comparable to fly ash-based AAM while having 65% better fire resistivity. Incorporating bricks as aggregate resulted in a maximum improvement of 17% and 27% in the AAMs' compressive and flexural strength levels, respectively, and a general enhancement in the freeze-thaw resistance with showing no reduction in compressive strength after exposure to elevated temperature. Incorporating 0.1 wt% nano-graphite further enhanced flexural strength by 30%, decreased water absorption by 18% and improved freeze-thaw resistance compared to the mix without nano-graphite. Moreover, adding up to 0.5% nano-graphite enhanced the fire resistivity of the composite, allowing it to exhibit 19% better strength performance than before exposure
    corecore