503 research outputs found

    Effects of an induced three-body force in the incident channel of (d,p) reactions

    Get PDF
    A widely accepted practice for treating deuteron breakup in A(d,p)BA(d,p)B reactions relies on solving a three-body A+n+pA+n+p Schr\"odinger equation with pairwise AA-nn, AA-pp and nn-pp interactions. However, it was shown in [Phys. Rev. C \textbf{89}, 024605 (2014)] that projection of the many-body A+2A+2 wave function into the three-body A+n+pA+n+p channel results in a complicated three-body operator that cannot be reduced to a sum of pairwise potentials. It contains explicit contributions from terms that include interactions between the neutron and proton via excitation of the target AA. Such terms are normally neglected. We estimate the first order contribution of these induced three-body terms and show that applying the adiabatic approximation to solving the A+n+pA+n+p model results in a simple modification of the two-body nucleon optical potentials. We illustrate the role of these terms for the case of 40^{40}Ca(d,pd,p)41^{41}Ca transfer reactions at incident deuteron energies of 11.8, 20 and 56 MeV, using several parameterisations of nonlocal optical potentials.Comment: 7 pages, 2 figures. Publication due in Phys. Rev.

    Monte Carlo integration in Glauber model analysis of reactions of halo nuclei

    Full text link
    Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the most accurate wave functions and calculate the phase-shift functions without approximation. Examples of proton nucleus (e.g. p-6^6He, p-6^6Li) and nucleus-nucleus (e.g. 6^6He−12-^{12}C) scatterings illustrate the effectiveness of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of halo nuclei.Comment: 20 pages, 8 figure

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Extended sudden approximation model for high-energy nucleon removal reactions

    Full text link
    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen \cite{Anne2}, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17^{17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising fromlimited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored.Comment: 16 figures, submitted to Phys. Rev.

    Alternative evaluations of halos in nuclei

    Get PDF
    Data for the scattering of 6He, 8He, 9Li, and 11Li from hydrogen are analyzed within a fully microscopic folding model of proton-nucleus scattering. Current data suggest that of these only 11Li has a noticeable halo. For 6He, we have also analysed the complementary reaction 6Li(gamma,pi)6He(gs). The available data for that reaction support the hypothesis that 6He may not be a halo nucleus. However, those data are scarce and there is clearly a need for more to elicit the microscopic structure of 6He.Comment: 18 pages, 8 figures (added 4 figures), added reference. Version accepted for publication in Phys. Rev.

    Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X

    Get PDF
    We analyze the recently obtained new data on the partial cross sections and parallel momentum distributions for transitions to ground as well as excited states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup components of the one-neutron removal cross sections have been calculated within a finite range distorted wave Born approximation theory and an eikonal model, respectively. The nuclear contributions dominate the partial cross sections for the core excited states. By adding the nuclear and Coulomb cross sections together, a reasonable agreement is obtained with the data for these states. The shapes of the experimental parallel momentum distributions of the core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C. (Rapid communications

    Asymptotic normalization coefficient of ^{8}B from breakup reactions and the S_{17} astrophysical factor

    Get PDF
    We show that asymptotic normalization coefficients (ANC) can be extracted from one nucleon breakup reactions of loosely bound nuclei at 30-300 MeV/u. In particular, the breakup of ^{8}B is described in terms of an extended Glauber model. The 8B ANC extracted for the ground state of this nucleus from breakup data at several energies and on different targets, C^2 = 0.450+/-0.039} fm^-1, leads to the astrophysical factor S_{17}(0)= 17.4+/-1.5 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. The procedure described here is more general, providing an indirect method to determine reaction rates of astrophysical interest with beams of loosely bound radioactive nuclei.Comment: 4 pages, RevTex, 3 figures revised version to appear in Phys Rev Let

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He∗^* and charge-exchange 6^6Li(n,p)6^6He∗^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1−,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps
    • 

    corecore