6 research outputs found

    Target-based virtual screening and molecular dynamics approach to identify potential antileishmanial agents through targeting UvrD-like helicase ATP-binding domain

    Get PDF
    Background: About 0.7-1.0 million people worldwide have been suffering from Leishmaniasis. It falls under a neglected tropical disease (NTD) and is transmitted by biting infected female phlebotomine sandflies. The implication of “the NTD road map: together towards 2030” in the infection-prone regions worldwide has curtailed morbidity to a greater extent. However, limited options in antileishmanial oral and topical drugs must decipher more therapeutically efficacious agents to cure and eradicate the disease. Methods: Virtual screening based on structure, docking, & molecular dynamics approaches were adopted to identify potential lead molecules against UvrD-like helicase of Leishmania donovani from the MCULE database. Lipinski rule of five, N/O atoms (1-15), number of rings (1-2), HBDs (4-5), and HBAs (5-10) were applied as initial filters of SBVS. AutoDock Vina and GROMACS packages were used for docking and MD simulations, respectively. Results: Initial filters of SBVS workflow yielded 93885 ligand hits out of 100 plus million investigational ligands. Following the toxicology test, 28 ligands were gotten that were additional reduced to molecules (17) when accepted done the BOILED Egg model of the ADME. Six molecules were shortlisted with zero violation compliance of drug-likeness further than Lipinski RO5 viz., Egan, Veber, Muegge, Ghose, & bioavailability score having ΔG (-6.7 to -7.4 kcalmol-1) lesser than reference inhibitor miltefosine (-4.9 kcalmol-1). The stability of MCULE-5754880195-0-2 was found to be greater than the known inhibitor and ligand molecules mentioned above.Conclusion:  MCULE-5754880195-0-2 has all therapeutic features by way of an admirable oral drug molecule & could be encouraging in Leishmaniasis prevention & treatment.Keywords: UvrD-like helicase; ADME; Leishmaniasis; MCULE database; SBVS; Docking; BOILED Egg; MD simulation; ATP-binding domain

    Phosphonium chloride–based deep eutectic solvents inhibit pathogenic Acanthamoeba castellanii belonging to the T4 genotype

    No full text
    Herein, we investigated the anti-amoebic activity of phosphonium-chloride–based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore