70 research outputs found

    Cytokine changes in patients with heatstroke during pilgrimage to Makkah

    Get PDF
    Circulating levels and role of IL-6, IL-1ra, TNFsr-II and CRP in patients with heatstroke is not fully known. This study correlated levels of these mediators with outcome in 26 patients. In survivors (n=20), IL-6 concentration declined on cooling, whereas in non-survivors levels continued to increase at 6 h following admission before declining. Admission TNFsr-II concentrations in survivors were significantly lower than non-survivors and levels continued to rise in both groups. IL-1ra levels were markedly elevated in both groups. Changes in cytokine levels were not influenced by renal function. Elevated C-reactive protein levels were observed for both groups and remained so despite cooling, furthermore, there was no correlation with alanine aminotransferase levels. The study demonstrated the elevation of the above mediators and suggested a role in the pathogenesis of heatstroke. Markedly elevated levels or those that remained elevated despite cooling were associated with mortality

    Loss of p53 Expression in Gastric Epithelial Cells of Helicobacter pylori-Infected Jordanian Patients

    Get PDF
    BACKGROUND: Around half of the global population is chronically infected with the stomach bacterium Helicobacter pylori, making it one of the most common chronic infections worldwide. H. pylori induces the production of reactive oxygen species, DNA damage, and accelerates the degradation of the tumor suppressor protein p53, which may lead to cancer development. In this study, we investigated the relationship between H. pylori infection and the expression of p53 in gastric mucosa in a group of patients from Jordan. METHODS: In this retrospective case-control study, the epithelium of gastric glands in subjects chronically infected with H. pylori was examined for the expression of p53. Paraffin-embedded gastric biopsy samples from the archives for 50 Jordanian patients diagnosed with chronic H. pylori infection and 25 samples free of H. pylori infection and any other gastric abnormalities were selected. Samples were analyzed for the presence of H. pylori as well as p53 expression levels in the mucosa and submucosa by immunohistochemical analyses and Western blotting. RESULTS: H. pylori was detected in the gastric tissues of infected individuals (n = 50); whereas, no H. pylori infection was detected in uninfected healthy individuals (n = 25) using immunohistochemistry. In contrast to the noninfected samples of gastric mucosa, no nuclear p53 expression was detected in the infected samples using immunohistochemistry. In addition, the levels of p53 in H. pylori-positive samples detected by Western blotting were significantly lower than those in the negative individuals. CONCLUSION: Our data reveal that p53 protein expression decreased in gastric mucosa of patients infected with H. pylori. The loss of this tumor suppressor may play a role in the increased risk for tumor initiation associated with H. pylori carriage

    Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    Get PDF
    AbstractPropionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on human skin. A knock-out mutant lacking the gene encoding the berninamycin-like peptide precursor was unable to downregulate FOXM1 and to halt the cell cycle. Our study reveals a novel host cell-interacting activity of P. acnes

    Chlamydia trachomatis prevents apoptosis via activation of PDPK1-MYC and enhanced mitochondrial binding of hexokinase II

    Get PDF
    The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection

    Chlamydia infection depends on a functional ​MDM2-​p53 axis

    Get PDF
    Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53-MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen's anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection

    Pan-genome analysis of the genus Finegoldia identifies two distinct clades, strain-specific heterogeneity, and putative virulence factors

    No full text
    Abstract Finegoldia magna, a Gram-positive anaerobic coccus, is an opportunistic pathogen, associated with medical device-related infections. F. magna is the only described species of the genus Finegoldia. We report the analysis of 17 genomes of Finegoldia isolates. Phylogenomic analyses showed that the Finegoldia population can be divided into two distinct clades, with an average nucleotide identity of 90.7%. One clade contains strains of F. magna, whereas the other clade includes more heterogeneous strains, hereafter tentatively named β€œFinegoldia nericia”. The latter species appears to be more abundant in the human microbiome. Surface structure differences between strains of F. magna and β€œF. nericia” were detected by microscopy. Strain-specific heterogeneity is high and previously identified host-interacting factors are present only in subsets of β€œF. nericia” and F. magna strains. However, all genomes encode multiple host factor-binding proteins such as albumin-, collagen-, and immunoglobulin-binding proteins, and two to four copies of CAMP (Christie-Atkins-Munch-Petersen) factors; in accordance, most strains show a positive CAMP reaction for co-hemolysis. Our work sheds new light of the genus Finegoldia and its ability to bind host components. Future research should explore if the genomic differences identified here affect the potential of different Finegoldia species and strains to cause opportunistic infections

    IFN-Ξ³-Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy

    Get PDF
    Chlamydial infection of the host cell induces Gamma interferon (IFNΞ³), a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNΞ³-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNΞ³-stimulated mouse embryonic fibroblasts (MEFs). We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNΞ³, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5βˆ’/βˆ’ MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNΞ³-induced Atg5βˆ’/βˆ’ cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6βˆ’/βˆ’) MEFs, in which chlamydial growth is enhanced, do not respond to IFNΞ³ even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction

    A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver

    Get PDF
    Background: In general, immune effector molecules are induced by infection. Methodology and Principal Findings: However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNc. Constitutive and IFNc-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 59 exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. Conclusions and Significance: The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed

    The IFN-Ξ³-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens

    Get PDF
    Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-Ξ³-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-Ξ³ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen

    Compensatory T Cell Responses in IRG-Deficient Mice Prevent Sustained Chlamydia trachomatis Infections

    Get PDF
    The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-Ξ³ (IFNΞ³) plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNΞ³ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs), we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3(-/-) mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3(-/-) mice is dependent on an exacerbated CD4+ T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4+ T cells and prevents the establishment of a persistent infection in mice
    • …
    corecore