10 research outputs found

    Adherence to Lung-Protective Ventilation Principles in Pediatric Acute Respiratory Distress Syndrome:A Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Study

    Get PDF
    OBJECTIVES: To describe mechanical ventilation management and factors associated with nonadherence to lung-protective ventilation principles in pediatric acute respiratory distress syndrome. DESIGN: A planned ancillary study to a prospective international observational study. Mechanical ventilation management (every 6 hr measurements) during pediatric acute respiratory distress syndrome days 0-3 was described and compared with Pediatric Acute Lung Injury Consensus Conference tidal volume recommendations (< 7 mL/kg in children with impaired respiratory system compliance, < 9 mL/kg in all other children) and the Acute Respiratory Distress Syndrome Network lower positive end-expiratory pressure/higher FIO2 grid recommendations. SETTING: Seventy-one international PICUs. PATIENTS: Children with pediatric acute respiratory distress syndrome. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Analyses included 422 children. On pediatric acute respiratory distress syndrome day 0, median tidal volume was 7.6 mL/kg (interquartile range, 6.3-8.9 mL/kg) and did not differ by pediatric acute respiratory distress syndrome severity. Plateau pressure was not recorded in 97% of measurements. Using delta pressure (peak inspiratory pressure - positive end-expiratory pressure), median tidal volume increased over quartiles of median delta pressure (p = 0.007). Median delta pressure was greater than or equal to 18 cm H2O for all pediatric acute respiratory distress syndrome severity levels. In severe pediatric acute respiratory distress syndrome, tidal volume was greater than or equal to 7 mL/kg 62% of the time, and positive end-expiratory pressure was lower than recommended by the positive end-expiratory pressure/FIO2 grid 70% of the time. In multivariable analysis, tidal volume nonadherence was more common with severe pediatric acute respiratory distress syndrome, fewer PICU admissions/yr, non-European PICUs, higher delta pressure, corticosteroid use, and pressure control mode. Adherence was associated with underweight stature and cuffed endotracheal tubes. In multivariable analysis, positive end-expiratory pressure/FIO2 grid nonadherence was more common with higher pediatric acute respiratory distress syndrome severity, ventilator decisions made primarily by the attending physician, pre-ICU cardiopulmonary resuscitation, underweight stature, and age less than 2 years. Adherence was associated with respiratory therapist involvement in ventilator management and longer time from pediatric acute respiratory distress syndrome diagnosis. Higher nonadherence to tidal volume and positive end-expiratory pressure recommendations were independently associated with higher mortality and longer duration of ventilation after adjustment for confounding variables. In stratified analyses, these associations were primarily influenced by children with severe pediatric acute respiratory distress syndrome. CONCLUSIONS: Nonadherence to lung-protective ventilation principles is common in pediatric acute respiratory distress syndrome and may impact outcome. Modifiable factors exist that may improve adherence

    sj-tiff-1-jic-10.1177_08850666231164613 - Supplemental material for Improvements in Accuracy and Confidence in Rhythm Identification After Cardiac Surgery Using the AtriAmp Signals

    No full text
    Supplemental material, sj-tiff-1-jic-10.1177_08850666231164613 for Improvements in Accuracy and Confidence in Rhythm Identification After Cardiac Surgery Using the AtriAmp Signals by Diane H. Brown, Xiao Zhang, Awni M. Al-Subu and Nicholas H. Von Bergen in Journal of Intensive Care Medicine</p

    The inter-rater reliability of pediatric point-of-care lung ultrasound interpretation in children with acute respiratory failure

    No full text
    Objectives: Use of point-of-care lung ultrasound (POC-LUS) has increased significantly in pediatrics yet it remains under-studied in the pediatric intensive care unit (PICU). No studies explicitly evaluate the reliability of POC-LUS artifact interpretation among critically ill children with acute respiratory failure (ARF) in the PICU. We thus designed this study to determine the inter-rater reliability of POC-LUS interpretation in pediatric ARF among pediatric intensivists trained in POC-LUS and an expert intensivist. Methods: We compared the interpretation of lung sliding, pleural line characteristics, ultrasound artifacts, and POC-LUS diagnoses among pediatric intensivists and an expert intensivist in a cohort of children admitted to the PICU for ARF. Kappa statistics (k) adjusted for maximum attainable agreement (k/kmax ) were used to quantify chance-correct agreement between the pediatric intensivist and expert physician. Results: We enrolled 88 patients, evaluating 3 zones per hemithorax (anterior, lateral, and posterior) for lung sliding, pleural line characteristics, ultrasound artifacts, and diagnosis. There was moderate agreement between the PICU intensivist and expert-derived diagnoses with 56% observed agreement (k/kmax = 0.46, 95% confidence interval [CI] 0.31-0.65). Agreement in identification of lung sliding (k = 0.19, 95% CI -0.17 to 0.56) and pleural line characteristics (k = 0.24, 95% CI 0.08-0.40) was slight and fair, respectively, while agreement in the interpretation of ultrasound artifacts ranged from moderate to substantial. Conclusions: Evidence supporting the evaluation of neonatal and adult patients with POC-LUS should not be extrapolated to critically ill pediatric patients. This study adds to the evidence supporting use of POC-LUS in the PICU by demonstrating moderate agreement between PICU intensivist and expert-derived POC-LUS diagnoses

    Lung ultrasound artifact findings in pediatric patients admitted to the intensive care unit for acute respiratory failure

    No full text
    Purpose: To describe point-of-care lung ultrasound (POC-LUS) artifact findings in children admitted to the pediatric intensive care unit (PICU) for acute respiratory failure (ARF). Methods: This is a secondary analysis of a prospective observational study completed in a 21-bed PICU. Children \u3e 37 weeks gestational age and ≤ 18 years were enrolled from December 2018 to February 2020. POC-LUS was completed and interpreted by separate physicians blinded to all clinical information. POC-LUS was evaluated for the presence of lung sliding, pleural line characteristics, ultrasound artifacts, and the ultrasound diagnosis. Results: Eighty-seven subjects were included. A-lines were the most frequent artifact, occurring in 58% of lung zones (163/281) in those with bronchiolitis, 39% of lung zones (64/164) in those with pneumonia, and 81% of lung zones (48/59) in those with status asthmaticus. Sub-pleural consolidation was second most common, occurring in 28% (80/281), 30% (50/164), and 12% (7/59) of those with bronchiolitis, pneumonia, and status asthmaticus, respectively. The pattern a priori defined as bronchiolitis, pneumonia, and status asthmaticus was demonstrated in 31% (15/48), 10% (3/29), and 40% (4/10) of subjects with bronchiolitis, pneumonia, and status asthmaticus, respectively. Conclusion: We found significant heterogeneity and overlap of POC-LUS artifacts across the most common etiologies of ARF in children admitted to the PICU. We have described the POC-LUS artifact findings in pediatric ARF to support clinicians using POC-LUS and to guide future pediatric POC-LUS studies. Determining the optimal role of POC-LUS as an adjunct in the care of pediatric patients requires further study

    Comparison of chest radiograph and lung ultrasound in children with acute respiratory failure

    No full text
    Purpose:Chest x-ray (CXR) is the standard imaging used to evaluate children in acute respiratory distress and failure. Our objective was to compare the lung-imaging techniques of CXR and lung ultrasound (LUS) in the evaluation of children with acute respiratory failure (ARF) to quantify agreement and to determine which technique identified a higher frequency of pulmonary abnormalities. Methods:This was a secondary analysis of a prospective observational study evaluating the sensitivity and specificity of LUS in children with ARF from 12/2018 to 02/2020 completed at the University of Wisconsin-Madison (USA). Children \u3e 37.0 weeks corrected gestational age and ≤ 18 years of age admitted to the PICU with ARF were evaluated with LUS. We compared CXR and LUS completed within 6 h of each other. Kappa statistics (k) adjusted for maximum attainable agreement (k/kmax) were used to quantify agreement between imaging techniques and descriptive statistics were used to describe the frequency of abnormalities. Results:Eighty-eight children had LUS completed, 32 with concomitant imaging completed within 6 h are included. There was fair agreement between LUS and CXR derived diagnoses with 58% agreement (k/kmax = 0.36). Evaluation of imaging patterns included: normal, 57% agreement (k = 0.032); interstitial pattern, 47% agreement (k = 0.003); and consolidation, 65% agreement (k = 0.29). CXR identified more imaging abnormalities than LUS. Conclusions:There is fair agreement between CXR and LUS-derived diagnoses in children with ARF. Given this, clinicians should consider the benefits and limitations of specific imaging modalities when evaluating children with ARF. Additional studies are necessary to further define the role of LUS in pediatric ARF given the small sample size of our study

    Effectiveness and Safety of Albuterol Solutions with and without Benzalkonium Chloride.

    No full text
    Introduction: Continuous aerosolized β2-agonist, namely albuterol, is the most commonly used therapy for critical asthma. Benzalkonium chloride is a preservative present in some formulations of aerosolized albuterol solutions that can induce bronchospasm by itself. Recent studies have shown that inhalation of albuterol containing benzalkonium chloride might induce unintended bronchoconstriction and poor outcomes. This study aims to investigate whether using albuterol solutions containing benzalkonium chloride results in prolonged hospital length of stay (LOS).Methods: A retrospective cohort study of pediatric subjects admitted to the PICU and treated with continuous albuterol. Data was collected and compared before and after a change to benzalkonium chloride-containing solutions. Subjects who were treated with preservative-free solutions were used as control. The primary outcome was PICU and hospital LOS; secondary outcomes included the duration of continuous albuterol and use of adjunctive therapies.Results: A total of 266 admissions were included in the study. One hundred forty subjects (52.6%) were exposed to benzalkonium chloride. Median age and severity of illness scoring were similar between groups. The initial dose of continuous albuterol was significantly higher in the benzalkonium chloride group median 15 (IQR: 10-20) mg/hr compared to the preservative free group 10 (IQR: 10-20) mg/hr (p\u3c0.001). PICU LOS was longer for the preservative -free group 2.5 (IQR: 1.4, 4.6) days vs. 1.8 (IQR: 1.1, 2.9) days for benzalkonium chloride group (p=0.002). There was no significant difference in duration of continuous albuterol therapy (p = 0.16) or need for adjunctive respiratory support [Heliox (p=0.32), NIPPV(p=0.81), and invasive mechanical ventilation (p=0.57)].Conclusions: In contrast to published literature showing that benzalkonium chloride may be associated with a longer duration of continuous albuterol nebulization and hospital LOS, our study demonstrated that benzalkonium chloride-containing albuterol is safe for continuous nebulization in critically ill children and not associated with worse outcomes

    Adherence to Lung-Protective Ventilation Principles in Pediatric Acute Respiratory Distress Syndrome

    No full text
    OBJECTIVES: To describe mechanical ventilation management and factors associated with nonadherence to lung-protective ventilation principles in pediatric acute respiratory distress syndrome.DESIGN: A planned ancillary study to a prospective international observational study. Mechanical ventilation management (every 6 hr measurements) during pediatric acute respiratory distress syndrome days 0-3 was described and compared with Pediatric Acute Lung Injury Consensus Conference tidal volume recommendations (&lt; 7 mL/kg in children with impaired respiratory system compliance, &lt; 9 mL/kg in all other children) and the Acute Respiratory Distress Syndrome Network lower positive end-expiratory pressure/higher FIO2 grid recommendations.SETTING: Seventy-one international PICUs.PATIENTS: Children with pediatric acute respiratory distress syndrome.INTERVENTIONS: None.MEASUREMENTS AND MAIN RESULTS: Analyses included 422 children. On pediatric acute respiratory distress syndrome day 0, median tidal volume was 7.6 mL/kg (interquartile range, 6.3-8.9 mL/kg) and did not differ by pediatric acute respiratory distress syndrome severity. Plateau pressure was not recorded in 97% of measurements. Using delta pressure (peak inspiratory pressure - positive end-expiratory pressure), median tidal volume increased over quartiles of median delta pressure (p = 0.007). Median delta pressure was greater than or equal to 18 cm H2O for all pediatric acute respiratory distress syndrome severity levels. In severe pediatric acute respiratory distress syndrome, tidal volume was greater than or equal to 7 mL/kg 62% of the time, and positive end-expiratory pressure was lower than recommended by the positive end-expiratory pressure/FIO2 grid 70% of the time. In multivariable analysis, tidal volume nonadherence was more common with severe pediatric acute respiratory distress syndrome, fewer PICU admissions/yr, non-European PICUs, higher delta pressure, corticosteroid use, and pressure control mode. Adherence was associated with underweight stature and cuffed endotracheal tubes. In multivariable analysis, positive end-expiratory pressure/FIO2 grid nonadherence was more common with higher pediatric acute respiratory distress syndrome severity, ventilator decisions made primarily by the attending physician, pre-ICU cardiopulmonary resuscitation, underweight stature, and age less than 2 years. Adherence was associated with respiratory therapist involvement in ventilator management and longer time from pediatric acute respiratory distress syndrome diagnosis. Higher nonadherence to tidal volume and positive end-expiratory pressure recommendations were independently associated with higher mortality and longer duration of ventilation after adjustment for confounding variables. In stratified analyses, these associations were primarily influenced by children with severe pediatric acute respiratory distress syndrome.CONCLUSIONS: Nonadherence to lung-protective ventilation principles is common in pediatric acute respiratory distress syndrome and may impact outcome. Modifiable factors exist that may improve adherence.</p

    Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE):an international, observational study

    No full text
    Background: Paediatric acute respiratory distress syndrome (PARDS) is associated with high mortality in children, but until recently no paediatric-specific diagnostic criteria existed. The Pediatric Acute Lung Injury Consensus Conference (PALICC) definition was developed to overcome limitations of the Berlin definition, which was designed and validated for adults. We aimed to determine the incidence and outcomes of children who meet the PALICC definition of PARDS. Methods: In this international, prospective, cross-sectional, observational study, 145 paediatric intensive care units (PICUs) from 27 countries were recruited, and over a continuous 5 day period across 10 weeks all patients were screened for enrolment. Patients were included if they had a new diagnosis of PARDS that met PALICC criteria during the study week. Exclusion criteria included meeting PARDS criteria more than 24 h before screening, cyanotic heart disease, active perinatal lung disease, and preparation or recovery from a cardiac intervention. Data were collected on the PICU characteristics, patient demographics, and elements of PARDS (ie, PARDS risk factors, hypoxaemia severity metrics, type of ventilation), comorbidities, chest imaging, arterial blood gas measurements, and pulse oximetry. The primary outcome was PICU mortality. Secondary outcomes included 90 day mortality, duration of invasive mechanical and non-invasive ventilation, and cause of death. Findings: Between May 9, 2016, and June 16, 2017, during the 10 study weeks, 23 280 patients were admitted to participating PICUs, of whom 744 (3·2%) were identified as having PARDS. 95% (708 of 744) of patients had complete data for analysis, with 17% (121 of 708; 95% CI 14–20) mortality, whereas only 32% (230 of 708) of patients met Berlin criteria with 27% (61 of 230) mortality. Based on hypoxaemia severity at PARDS diagnosis, mortality was similar among those who were non-invasively ventilated and with mild or moderate PARDS (10–15%), but higher for those with severe PARDS (33% [54 of 165; 95% CI 26–41]). 50% (80 of 160) of non-invasively ventilated patients with PARDS were subsequently intubated, with 25% (20 of 80; 95% CI 16–36) mortality. By use of PALICC PARDS definition, severity of PARDS at 6 h after initial diagnosis (area under the curve [AUC] 0·69, 95% CI 0·62–0·76) discriminates PICU mortality better than severity at PARDS diagnosis (AUC 0·64, 0·58–0·71), and outperforms Berlin severity groups at 6 h (0·64, 0·58–0·70; p=0·01). Interpretation: The PALICC definition identified more children as having PARDS than the Berlin definition, and PALICC PARDS severity groupings improved the stratification of mortality risk, particularly when applied 6 h after PARDS diagnosis. The PALICC PARDS framework should be considered for use in future epidemiological and therapeutic research among children with PARDS. Funding: University of Southern California Clinical Translational Science Institute, Sainte Justine Children's Hospital, University of Montreal, Canada, Réseau en Santé Respiratoire du Fonds de Recherche Quebec-Santé and Children's Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine
    corecore