54 research outputs found

    Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics

    Get PDF
    Diabetic retinopathy (DR) is a result of neurovacular insults from hyperglycemia in diabetes mellitus (DM), and it is one of the top causes of vision loss throughout the modern world. This review article explores the role endothelial to mesenchymal transition (EndMT) has on the pathogenesis of DR. EndMT contributes to the disruption of the blood-retinal barrier, vascular leakage, neovascularization, and fibrosis observed in DR. Risk factors and biomarkers associated with DR severity are discussed, highlighting the importance of early detection and targeted therapies. Current treatments primarily focus on anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation. However, emerging therapeutic strategies aimed at inhibiting EndMT and its downstream effects show promise in preventing the development and progression of DR. Understanding the molecular and cellular mechanisms underlying EndMT in DR provides valuable insights into the disease process and offers potential options for the development of potential treatments

    12/15-Lipoxygenase-Derived Lipid Metabolites Induce Retinal Endothelial Cell Barrier Dysfunction: Contribution of NADPH Oxidase

    Get PDF
    The purpose of the current study was to evaluate the effect of 12/15- lipoxygenase (12/15-LOX) metabolites on retinal endothelial cell (REC) barrier function. FITC-dextran flux across the REC monolayers and electrical cell-substrate impedance sensing (ECIS) were used to evaluate the effect of 12- and 15-hydroxyeicosatetreanoic acids (HETE) on REC permeability and transcellular electrical resistance (TER). Effect of 12- or 15-HETE on the levels of zonula occludens protein 1 (ZO-1), reactive oxygen species (ROS), NOX2, pVEGF-R2 and pSHP1 was examined in the presence or absence of inhibitors of NADPH oxidase. In vivo studies were performed using Ins2Akita mice treated with or without the 12/15-LOX inhibitor baicalein. Levels of HETE and inflammatory mediators were examined by LC/MS and Multiplex Immunoassay respectively. ROS generation and NOX2 expression were also measured in mice retinas. 12- and 15- HETE significantly increased permeability and reduced TER and ZO-1expression in REC. VEGF-R2 inhibitor reduced the permeability effect of 12-HETE. Treatment of REC with HETE also increased ROS generation and expression of NOX2 and pVEGF-R2 and decreased pSHP1 expression. Treatment of diabetic mice with baicalein significantly decreased retinal HETE, ICAM-1, VCAM-1, IL-6, ROS generation, and NOX2 expression. Baicalein also reduced pVEGF-R2 while restored pSHP1 levels in diabetic retina. Our findings suggest that 12/15-LOX contributes to vascular hyperpermeability during DR via NADPH oxidase dependent mechanism which involves suppression of protein tyrosine phosphatase and activation of VEGF-R2 signal pathway.Qatar National Research Fund (NPRP 4 - 1046 - 3 -284), American Heart Association (AHA00104) and Vision Discovery Institute (VDI002010) and Bridge Fund (BFP00018) from the Georgia Health Sciences University.Scopu

    A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase

    Get PDF
    Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism.National Institutes of Health Grant 5R01EY023315 and National Priorities Research Program Grant 4-1046-3-284 from the Qatar National Research Fund (a member of Qatar Foundation). This study was also supported in part by the National Center for Research Resources, National Institutes of Health Grant S10RR027926

    Pigment epithelium-derived factor inhibits retinal microvascular dysfunction induced by 12/15-lipoxygenase-derived eicosanoids

    Get PDF
    We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX–NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12-HETE with/without PEDF. Thereafter, fluorescein angiography (FA) was used to evaluate the vascular leakage, followed by optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in the PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETEs and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that 12- and 15-HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX–NOX signaling opens up a new direction for treating DR by restoring endogenous PEDF that carries out multilevel vascular protective functions.National Eye Institute 5R01EY023315-02, Qatar National Research Fund NPRP 4-1046-3-284, and Vision Discovery Institute (MA), Mr. and Mrs. Richards travel award (ASI)

    Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro

    Get PDF
    Tricalcium silicate cements have been successfully employed in the biomedical field as bioactive bone and dentin substitutes, with widely acclaimed osteoactive properties. This research analyzed the effects of different tricalcium silicate cement formulations on the temporal osteoactivity profile of human bone marrow-derived mesenchymal stem cells (hMW-MSCs). These cells were exposed to four commercially available tricalcium silicate cement formulations in osteogenic differentiation medium. After 1, 3, 7 and 10 days, quantitative real-time polymerase chain reaction and Western blotting were performed to detect expression of the target osteogenic markers ALP, RUNX2, OSX, OPN, MSX2 and OCN. After 3, 7, 14 and 21 days, alkaline phosphatase assay was performed to detect changes in intracellular enzyme level. An Alizarin Red S assay was performed after 28 days to detect extracellular matrix mineralization. In the presence of tricalcium silicate cements, target osteogenic markers were downregulated at the mRNA and protein levels at all time points. Intracellular alkaline phosphatase enzyme levels and extracellular mineralization of the experimental groups were not significantly different from the untreated control. Quantitative polymerase chain reaction results showed increases in downregulation of RUNX2, OSX, MSX2 and OCN with increasing time of exposure to the tricalcium silicate cements, while ALP showed peak downregulation at day 7. For Western blotting, OSX, OPN, MSX2 and OCN showed increased downregulation with increased exposure time to the tested cements. Alkaline phosphatase enzyme levels generally declined after day 7. Based on these results, it is concluded that tricalcium silicate cements do not induce osteogenic differentiation of hBM-MSCs in vitro

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Homocysteine: A Potential Biomarker for Diabetic Retinopathy

    No full text
    Diabetic retinopathy (DR) is the most common cause of blindness in people under the age of 65. Unfortunately, the current screening process for DR restricts the population that can be evaluated and the disease goes undetected until irreversible damage occurs. Herein, we aimed to evaluate homocysteine (Hcy) as a biomarker for DR screening. Hcy levels were measured by enzyme-linked immuno sorbent assay (ELISA) and immunolocalization methods in the serum, vitreous and retina of diabetic patients as well as in serum and retina of different animal models of DM representing type 1 diabetes (streptozotocin (STZ) mice, Akita mice and STZ rats) and db/db mice which exhibit features of human type 2 diabetes. Our results revealed increased Hcy levels in the serum, vitreous and retina of diabetic patients and experimental animal models of diabetes. Moreover, optical coherence tomography (OCT) and fluorescein angiography (FA) were used to evaluate the retinal changes in mice eyes after Hcy-intravitreal injection into normal wild-type (WT) and diabetic (STZ) mice. Hcy induced changes in mice retina which were aggravated under diabetic conditions. In conclusion, our data reported Hcy as a strong candidate for use as a biomarker in DR screening. Targeting the clearance of Hcy could also be a future therapeutic target for DR

    Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens

    No full text
    Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory
    • …
    corecore