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Diabetic retinopathy (DR) is a result of neurovacular insults from hyperglycemia

in diabetes mellitus (DM), and it is one of the top causes of vision loss throughout

the modern world. This review article explores the role endothelial to

mesenchymal transition (EndMT) has on the pathogenesis of DR. EndMT

contributes to the disruption of the blood-retinal barrier, vascular leakage,

neovascularization, and fibrosis observed in DR. Risk factors and biomarkers

associated with DR severity are discussed, highlighting the importance of early

detection and targeted therapies. Current treatments primarily focus on anti-

vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser

photocoagulation. However, emerging therapeutic strategies aimed at inhibiting

EndMT and its downstream effects show promise in preventing the development

and progression of DR. Understanding the molecular and cellular mechanisms

underlying EndMT in DR provides valuable insights into the disease process and

offers potential options for the development of potential treatments.

KEYWORDS
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1 Epidemiology

Diabetic Retinopathy (DR) is a microvascular complication of diabetes mellitus (DM),

caused by hyperglycemic insults leading to vision-threatening damage to the retina (1). DR

is the number one cause of loss of vision in adults within the United States (2). Early

detection and immediate treatment are paramount in avoiding blindness from this

common disease (2).

In the next ten years, the global prevalence of DM has been estimated to become 592

million (3). DR is the most common microvascular complication of diabetes (4). Ninety-

three million people worldwide suffer from DR, with 25-30% of these people having vision-
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threatening complications (5). Of these patients, 5-8% of patients

require laser treatment, and 5% require vitrectomy surgery (6).

Hyperglycemia and subsequent metabolic disorders activate

inflammatory and oxidative pathways within the retina that cause

damage to retinal vessels. Growth of microaneurysms and

breakdown of the blood-retinal barrier (BRB) and subsequent

development of diabetic macular edema (DME) and hard

exudates are the typical clinical manifestations of non-

proliferative diabetic retinopathy (NPDR) (1). Vasoconstriction

and vascular occlusion within retinal capillaries lead to the

development of ischemic pale spots ‘cotton-wool spots’ (2).

Development of severe retinal ischemia eventually causes the

upregulation of angiogenic factors, like Vascular Endothelial

Growth Factor (VEGF) (3). The upregulation of angiogenic

factors causes the characteristic neovascularization seen in

proliferative diabetic retinopathy (PDR) (3).
1.1 Risk factors and biomarkers

DR affects patients with diagnosed or undiagnosed DM. The

most significant risk factors for developing DR are older age, longer

duration of DM, high glycemic levels, and hypertension (2). A

higher HbA1C is significantly associated with advancement of DR,

whereas intense glycemic control significantly correlates with a

reduction in incidence and progression of DR (7, 8). Recent

studies have shown high variability in glucose levels also

contributes to severity of DR; therefore, controlling post-prandial

glucose levels is important in reducing the progression of DR as well

(9, 10). Tight blood pressure control is another important risk factor

modification that has been shown to reduce the damage inflicted on

the retina from DR (11). Other modifiable risk factors that are not

as critical in DR but still contribute to the development and

advancement of disease include: nephropathy, hyperlipidemia,

smoking, and obesity (12, 13). Non-modifiable risk factors

include pregnancy, age, and genetics (1, 14).

Despite the above risk factors, current studies find a variation

between the development and severity of DR that cannot be fully

explained by the beforementioned risk factors. Therefore,

identifying newer biomarkers that can help stratify patients and

determine their response to therapeutics is important (2). Systemic

biomarkers that have been found to strongly correlate with severity

of DR include markers for inflammation, such as C-reactive protein

(CRP), homocysteine, and advanced glycation end products (AGEs)

(15–17). Newer markers discovered include apolipoprotein, vitamin

D, leptin, as well as various genetic markers (1). Ocular biomarkers

from sampling vitreous and tears include VEGF and platelet-

derived growth factor (PDGF), but these markers need more

validation studies for predicting DR severity (18, 19).
1.2 Mechanisms of vision loss

DME is the most common cause of visual loss in DR patients

occurring in both NPDR and PDR at various levels of disease (3,

20). DME results from leakage of fluid and proteins from retinal
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vessels into the macula due to breakdown of BRB (20). Hard

exudates and edema can be seen on fundoscopy (21). Tractional

retinal detachment (TRD) with vitreous hemorrhage is the second

form of vision loss resulting from DR (20). Unlike DME, TRD only

occurs in PDR due to the fibrovascular scarring generated during

neovascularization being pulled on by the vitreous (3). For TRD, a

ring of white scar tissue can be seen on fundoscopy (22).

Fibrovascular proliferation can also cause vitreous hemorrhage,

contributing to vision loss from PDR (20).

Endothelial cell to Mesenchymal Transition (EndMT) occurs

during the various stages of NPDR and PDR (23). The

transformation can contribute to both mechanisms of vision loss

mentioned above. EndMT contributes to DME by disrupting the

BRB, increasing vascular permeability due to the loss of endothelial

characteristics (24). This disruption leads not only to leakage of

fluid into the retina, but also of inflammatory mediators (24).

EndMT contributes to fibrosis within the retina due to the gain of

mesenchymal characteristics and eventually increases the likelihood

of TRD during PDR (23).
1.3 Pathogenesis of microvascular
dysfunction in diabetic retinopathy

There are several metabolic pathways involved in the

pathogenesis of DR, such as the polyol, protein kinase c (PKC),

and hexosamine pathways (25). Activation of these pathways cause

upregulation of cytokines and growth factors that leads to increased

vascular permeability and occlusion of blood vessels (1). Initially,

the blood vessels within the retina dilate in response to the

hyperglycemic insults to increase retinal metabolism (20).

Pericytes are specialized, contractile mesenchymal stem cells

(MSCs) that provide vascular tone and perfusion pressure within

the capillaries of the retina (26). Hyperglycemia causes apoptosis of

pericyte and endothelial cells leads to microaneurysm formation,

breakdown of BRB, and development of retinal ischemia (20).

Insufficient circulation leads to upregulation of VEGF (27), the

primary angiogenic factor that is associated with the vascular

permeability and angiogenesis seen in DR (20).

The high metabolic rate of the neural retina requires the

regulation of a distinct supply of specific nutrients by the BRB

(28). It regulates the transport of ions, water, and nutrients and

prevents immune cells and antibodies from passing into the retina

tissue (29). The BRB includes the inner BRB (iBRB) and the outer

BRB (oBRB) (30). The iBRB consists of endothelium, Müller cells,

and pericytes (30). The capillaries of the iBRB provide oxygen,

glucose, and other nutrients to neurons and prevent other

molecules from entering the retina for protection (31). The

oBRB is composed of retinal pigment epithelium (RPE) and

functions to regulate the transport between the choriocapillaris

and the retina (32). Various growth factors and cytokines that are

upregulated in DR, such as VEGF, HIF-1, and IL-1 b, induce BRB
breakdown through various mechanisms (33). Damage to the

iBRB and oBRB leads to fluid and protein extravasation into the

macula, as well as the degeneration of retinal capillaries, playing a
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critical role in the development of DME and severe visual loss in

DR (32).

One of the advanced stages of DR, known as PDR, is

characterized by neovascularization, as well as an increase in the

presence of myofibroblasts (34). This process can lead to the

development of fibrovascular tissue, which can result in traction on

the retina, leading to TRD and eventual blindness (2). There is a

switch at some point in PDR between neovascularization and fibrosis;

this is known as the angio-fibrotic switch (34). As previously stated,

VEGF is majorly responsible for neovascularization (20). Connective

tissue growth factor (CTGF) is another factor upregulated during DR

that contributes mainly to fibrosis within the eyes of patients (34).

The decrease in VEGF and increase in CTGF is associated with the

switch from angiogenesis to fibrosis in PDR (Figure 1) (34). CTGF is

a Transforming Growth Factor-Beta (TGF-b) effector that induces
tissue fibrosis during PDR (35). In addition to fibrosis during PDR,

TGF-b is also a main contributor to EndMT earlier on in DR (23).

As previously stated, the early vascular loss in DR is a major

contributor to the clinical manifestations of DR, and endothelial cell

and pericyte apoptosis is only partly responsible for this vascular

loss (20). Another part of the vascular loss found in DR is the

transformation of endothelial cells to mesenchymal cells through

EndMT (23). As a consequence of EndMT, endothelial cells

undergo a shift in their cell markers and phenotype, transitioning

from their original characteristics to acquire the cell markers and

phenotype typically associated with mesenchymal cells (36–38).

This process leads to the breakdown of the BRB and contributes to

the microvascular pathogenesis of DR (23).
1.4 Current treatments

In addition to optimizing blood glucose, lipids, and blood

pressure in diabetic patients, there are various intraocular

management strategies that have become standard practice in DR

patients (39, 40). For instance, the management of DME has been

significantly altered with the introduction of intravitreal anti-VEGF

injection therapies, such as ranibizumab, bevacizumab, and

aflibercept (2). Several randomized control trials since 2010 have

shown these agents significantly reduce DME and improve vision

(41–45). Aflibercept has been found to be the most efficacious agent

in patients with initial poor visual acuity (46). Despite all the
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of injections and total time for treatment courses is still unknown

(2). The current practice is to administer multiple injections within

the first year of treatment and then a gradual decrease in the

following years to maintain remission (39). Intravitreal anti-VEGF

injections have also been shown to benefit patients with PDR (47).

These medicines do, however, have some limitations and adverse

effects (20). The short half-life of these agents means that initially,

bimonthly injections are necessary to ensure efficacy (20). Elevation

of intraocular pressure, vitreous hemorrhage, and inflammation are

uncommon adverse effects (20). A rare adverse effect due to the high

number of injections necessary is endophthalmitis (20, 48).

Additionally, high cost and poor patient adherence are of concern

when it comes to this treatment modality (20). Currently, there is

research being done on other various anti-angiogenic agents that

inhibit vasoconstriction and vascular occlusion within retinal

capillaries multiple angiogenic factors in addition to or other than

VEGF, such as Squalamine and Nesvacumab, respectively (20, 49).

In cases of refractory DME that are unresponsive to anti-VEGF

treatments, intravitreal corticosteroid injections can be used (50).

These refractory cases are thought to be driven by the effects of

multiple cytokines (20). Corticosteroids target inflammatory

mediators known to contribute to the pathogenesis of DME (20).

There have been multiple clinical trials done for DME treatment

using triamcinolone acetonide, dexamethasone (DEX) intravitreal

implant, and fluocinolone intravitreal implant (48, 51–53). The use of

intravitreal corticosteroids has been associated with a lower number

of injections, lower cost, and higher compliance (20). However, given

the higher incidence of adverse effects, such as cataracts, glaucoma,

and vitreous hemorrhage, and no proven benefit in PDR, intravitreal

corticosteroid injections are considered second-line to anti-VEGF

injections (20, 48, 51–53).

On the other hand, in patients that have progressed to PDR,

panretinal laser photocoagulation (PRP) is considered first-line due

to its effectiveness in reducing vision loss in this patient population,

especially in patients with vitreous hemorrhage complications (54–

56). Aflibercept, an anti-VEGF agent previously mentioned, has

been shown to result in better visual outcomes and is a safer

alternative to PRP in select patients (47). Due to laser-induced

retinal damage from PRP, adverse effects include mild central visual

acuity loss and reduced night vision (57). However, PRP remains

important as an adjuvant and rescue therapy for PDR patients with
FIGURE 1

Angiofibrotic switch: elevated CTGF over vascular VEGF promotes fibrosis in PDR.
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high-risk complications by reducing the rate of severe visual loss

and halting the progression of retinopathy (20). In modern times,

there have been efforts to develop newer laser approaches that

reduce side effects (20) e.g. the pattern scanning laser (PASCAL)

(58), the subthreshold micropulse diode laser (D-MPL) (59), and

the navigated laser system (NAVILAS) (60).

Other treatments for DR under clinical evaluation include

cardiolipin inhibitors, mitochondria-specific antioxidants, as well

as other classes of antioxidants (61–63). All these treatments for DR

are focused on preventing late complications of the disease. An

alternate approach being investigated currently is treating the root

causes and early developments within DR (23). We researched the

current literature on EndMT, an early pathological event in DR and

potential treatments to prevent it and subsequent complications.
2 EndMT

EndMT is a process where endothelial cells undergo a

phenotypic transition to mesenchymal cells (64). This process has

been implicated in the pathogenesis of various diseases, including

diabetic complications (23). EndMT in diabetes is prompted by

various factors, such as elevated blood sugar levels and AGEs (23).

At the cellular level, EndMT is identified by the disappearance

of endothelial markers such as CD31, while gaining mesenchymal

markers such as a-smooth muscle actin (a-SMA) (65). This process

is driven by various pathways, including TGF-b, Notch, andWnt/b-
catenin signaling pathways (65, 66). Furthermore, hyperglycemia

can promote EndMT by triggering NF-kB signaling (67, 68). These

signaling pathways ultimately lead to the increased expression of

transcription factors, such as Snail, Slug, and Twist that promote

EndMT (69–72). Additionally, epigenetic regulation, such as DNA

methylation and histone modification, plays a role in EndMT (23,

73). One post-translational complex, methyltransferase-like 3

(METTL3), has been recently found to play an important role in

EndMT. METTL3 is responsible for the N6-methyladenosine (m6a)

modification, where a methyl group is added to the sixth nitrogen of

adenosine in RNA. METTL3 adds the m6a modification to

transient receptor potential cation channel 6 (TRPC6), which

works through the calcineurin/NFAT pathway, to increase

mesenchymal marker a-SMA and decrease endothelial markers

CD31 and VE-cadherin (74). Another epigenetic process involved

in EndMT is the methylation of maternally expressed gene 3

(MEG3) by DNA methyltransferase 1 (DMT1). Recent research

has shown that MEG3 is downregulated in rat models of DR due to

methylation by DMT1. Inhibition of MEG3 activates the PI3K/

AKT/mTOR pathway, which is implicated in the pathogenesis of

DR and EndMT (75). MicroRNAs (miRNAs) have also been shown

to regulate the expression of EndMT-related genes (24). In diabetes,

the expression of certain miRNAs is altered, which can promote

EndMT (24, 76).

The impact of EndMT on vascular function in diabetes is

multifactorial. One of the key consequences of EndMT is the loss

of function of the BRB, leading to increased vascular permeability

and the leakage of unwanted proteins and immune cells into the

retina, causing edema and inflammation of the surrounding tissues
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(77, 78). EndMT also contributes to the buildup of extracellular

matrix (ECM) proteins like collagen, forming fibrotic tissue (24). In

DR, this excess of ECM proteins leads to the enlargement of the

basement membrane in the retina. This process is part of the

pathogenesis of increased vascular permeability in DR (79).
2.1 EndMT in diabetic retinopathy

DR, a leading cause of visual impairment in adults, can be

categorized into NPDR and PDR stages (20). EndMT occurs

throughout these stages, contributing to increased vascular

permeability and fibrovascular scarring (23). Endothelial cells

within retinal capillaries help maintain the BRB, which consists of

cells joined together to prevent certain substances from entering the

retina from the circulatory system (80). EndMT disrupts the

integrity of the BRB, permitting plasma and proteins to enter the

retina, which can give rise to complications like DME (80, 81).

In DR, EndMT leads to thickening of the basement membrane

and increased deposition of matrix proteins, contributing to the

breakdown of the BRB (24, 82). Additionally, EndMT increases the

number of myofibroblasts, which can lead to TRD because of an

increase in fibrosis within the retina (79). Hyperglycemia,

suppression of long non-coding RNAs (lncRNAs), upregulation

of Notch2, and various circRNAs and miRNAs are all implicated in

EndMT induction through TGF-b signaling in DR (76, 81).

Overexpression of H19 and MEG3, effectively prevents EndMT

(24, 75, 81). Inhibition of Notch2 and suppression of various

circRNAs are also potential therapeutic targets for preventing

EndMT in DR (76).

We conducted our own study on EndMT within DR. The goal

of our study was to evaluate if there is a significant difference in the

amount of EndMT at different stages of the disease. EndMT and

fibroproliferative transformation were characterized by de novo

cellular expression of a-SMA. We used Ins2Akita mice as an

experimental model of type 1 diabetes. The mice eyes were

dissected to retrieve their retinas. We then performed

immunofluorescence (IF) on the retinas of 23 diabetic mice at 4-

weeks (8 mice), 12-weeks (8 mice), and 32-weeks (7 mice) old. We

also performed IF on the retinas of 9 non-diabetic mice that were

12-weeks-old to use as a control. The antibodies used to stain the

retina slides were for a-SMA, CD31, and DAPI. These were used as

markers for mesenchymal tissue, endothelial cells, and nuclear

markers, respectively. Images of these slides were taken at 20x

using fluorescence microscopy. The intensity of a-SMA was

analyzed using Image J software, and statistical analysis was

performed using One-way ANOVA Multiple Comparisons Test

with a p-value <0.05 considered significant. An increase in a-SMA

intensity correlated with an increase in EndMT. Our results

indicated that there was a significant increase in EndMT in the

retina of diabetic mice compared to the control group (Figures 2A,

C). Moreover, EndMT was significantly increased in the 12-week-

old diabetic mice when compared to the 4-week-old and 32-week-

old diabetic mice (Figures 2B, C). . There was no significant

difference between the amount of EndMT when comparing the 4-

week-old diabetic mice with the 32-week-old diabetic mice
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(Figure 2C). The significant increase of EndMT, at 12-weeks in

comparison to 4-weeks may be due to a temporal requirement for

diabetes to initiate the process of EndMT. The significant decline of

EndMT, at 32-weeks in comparison to 12-weeks, could be

attributed to the loss of pericytes and endothelial cells by 24

weeks in DR (83). Pericytes are mesenchymal stem cells, so they

contribute to the increase in mesenchymal cell population found

with EndMT (83).

Our findings are consistent with the suggestion that EndMT plays

a crucial role in the pathogenesis of microvascular dysfunction in DR.

This transformation could lead to loss of endothelial cells, capillary

degeneration, vascular leakage, and retinal hyperpermeability, leading

to complications like DME and TRD. Our study provides valuable

insight into the temporal changes of EndMT in the context of diabetic
Frontiers in Ophthalmology 05
retinopathy and highlights the importance of further research in this

area. Our research group has started investigating EndMT in

postmortem human retina that were obtained from Georgia Eye

Bank and processed to prepare paraffin-embedded sections. Slides

from 3 diabetic human samples and 3 non-diabetic human samples

were used in an IF experiment, with a-SMA as a mesenchymal

marker, DAPI as a marker for the nucleus, and VEGFR2 marking

endothelial cells. Our preliminary findings suggest that diabetic

human retinas exhibit a higher amount of mesenchymal tissue

compared to control groups as shown by a marked increase in a-
SMA immunoreactivity in retinal vessels of diabetic human subjects

compared to the non-diabetic group (Figure 3). Further research is

needed to confirm these results and to explore the temporal changes

of EndMT in diabetic human retinas.
B

C

A

FIGURE 2

(A) Immunofluorescence of a-SMA in retinal cryosections of 12-Week diabetic vs. Control (10X magnification). (B) 4 Week Diabetic vs. 12 Week Diabetic
vs. 32 Week Diabetic a-SMA Immunoreactivity in retinas of diabetic mice (20x magnification). (C) One-way ANOVA multiple comparison test of a-SMA
immunoreactivity intensity for 12 Week Control Group, 4 Week Diabetic, 12 Week Diabetic, and 32 Week diabetic mice. (Scale bar= 50mm). **P<.005,
***P<.0005, and ns, not significant.
FIGURE 3

Immunofluorescence of a-SMA in retina sections of human subjects using anti- a SMA (green), vascular marker VEGFR2 (red) and nuclear marker
DAPI (blue). There is an obvious increase in a-SMA immunoreactivity in retinal vessels (arrows) of diabetic human donors compared to the non-
diabetic donors.
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3 Targets to prevent EndMT

Exploring therapeutic targets for preventing EndMT in diabetic

patients is important, and it involves researching various molecules

and pathways. While the exact interplay and regulation between

these pathways are not yet fully understood, several potential targets

have emerged based on extensive research.

Among the pathways implicated in hyperglycemia-induced

EndMT, inhibition of Notch, canonical TGF-b, or non-canonical
TGF-b signaling alone has shown promise in preventing EndMT in

the context of DR (23). However, understanding the extent of

pathway overlap and co-regulation remains a subject of ongoing

investigation. Intriguingly, a few medications usually used for

glucose control in diabetics, such as sodium-glucose co-

transporter 2 (SGLT2) inhibitors and GLP-1 agonists, have also

shown effects in suppressing EndMT in different organs (84–86).

These medications activate AMP-activated protein kinase (AMPK),

which inhibits intracellular TGF-b signaling (85–87).

Sprouty-related proteins with EVH1 domain (SPRED2), a

member of the Sprouty/SPRED family, areis known for theirits

negative regulation of the Ras/Raf/ERK/MAPK signaling pathway.

SPRED 2 is another emerging target under investigation as

demonstrated by a study exploring its role on EndMT in DR. The

researchers used diabetic rat models and human retinal endothelial

cells (HRECs) treated with high glucose to simulate DR. The results

showed that SPRED2 expression was reduced in the retinal tissues

of diabetic rats and high glucose-treated HRECs. By increasing the

levels of SPRED2, the researchers observed a suppression of

endothelial injury, inhibition of EndMT by regulating specific

markers, improvement of tight junction components, and

downregulation of the MAPK signaling pathway. These findings

suggest that SPRED2 could be a promising therapeutic target for

managing the progression of DR (88).

Other proteins, such as Raf kinase inhibitor protein (RKIP), also

play a role in EndMT within DR. Increased RKIP levels have been

found to exhibit inhibitory effects on the cellular processes
Frontiers in Ophthalmology 06
associated with EndMT. Moreover, RKIP downregulation has

been found to reduce expression of endothelial markers CD31

and vWF in HRCECs under glucose-induced conditions, while

RKIP overexpression resulted in their upregulation. These results

suggest that RKIP exerts its action by negatively regulating glucose-

induced EndMT and associated cellular events in HRCECs, thereby

indicating finding ways to increase RKIP can be a potential therapy

for managing EndMT in DR (89).

Additionally, the involvement of LPA-1, a receptor for

lysophosphatidic acid (LPA), is being studied as a therapeutic

target for EndMT in DR. One study demonstrated that the

downregulation of acylglycerol kinase (AGK), an enzyme

involved in LPA production, suppressed EndMT in HRECs by

modulating the LPA-1/TGF-b/Notch signaling pathway. These

results suggest that targeting LPA-1 and its associated signaling

pathways may hold therapeutic potential for managing EndMT in

the context of DR (90).

Furthermore, recent research has established the role of formyl

peptide receptor 2 (FRPR2) in DR, contributing to both

pathological neovascularization and EndMT. FRPR2 is a G-

protein coupled receptor expressed in a variety of cells, including

endothelial cells and glial cells. An in vitro study showed that high

glucose upregulates FRPR2 in human endothelial cells. They also

found that in FRPR2 knock-out diabetic mice, there was a

significant decrease in mesenchymal markers on retinal

endothelial cells compared to wild-type diabetic mice. This shows

that FRPR2 plays an important role in EndMT and may have

potential as a novel therapeutic target for DR (91).

Select dietary supplements have displayed potential in

inhibiting EndMT. Notably, supplements like resveratrol and

eicosapentaenoic acid have shown inhibitory effects on the PKC

pathway, effectively impeding the induction of TGF-b and

endothelin-1 (ET-1), and subsequently suppressing EndMT in

retinal and glomerular endothelial cells, respectively (92, 93). In

addition to small molecule compounds, nucleic acid-based

approaches have also been explored. Short interfering RNAs
FIGURE 4

EndMT contributes to the pathogenesis of PDR and NPDR, eventually leading to central vision loss and blindness.
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(siRNAs) targeting pro-EndMT genes and lncRNAs that mimic

anti-EndMT microRNAs have shown promise in preventing

EndMT. Experimental silencing of lncRNAs ZFAS1 and

MALAT1, as well as induction of various miRNAs, have proven

to be effective in suppressing hyperglycemia-induced EndMT

through different molecular pathways (76, 94–98). Moreover,

synthetic lncRNAs have emerged as a potential strategy to

suppress glucose-induced EndMT (99).

Experimental upregulation of lncRNAs H19 and MEG3, which

are inhibited by glucose, has shown promise in preventing EndMT

in specifically DR (81, 100). Moreover, emerging evidence suggests

that specific members of the bone morphogenetic protein (BMP)

family (BMP2, BMP4, and BMP9), a subgroup of the TGF-b
superfamily, play crucial roles in the regulation of the EndMT

process in DR (101, 102). Targeting the inhibitory modulation of

these BMPs represents a promising therapeutic approach for

preventing or attenuating EndMT in DR.

In summary, EndMT exerts its influence on both the non-

proliferative and proliferative stages of DR, contributing to the

mechanisms underlying blindness in DR (Figure 4). The critical role

played by EndMT in the development of microvascular dysfunction

in DR (Figure 5) suggests the need for further investigations to

understand the underlying molecular and cellular mechanisms.
Frontiers in Ophthalmology 07
This should lead to the identification of new therapeutic strategies

to mitigate the early pathological changes in DR and preserve vision

of diabetic patients.
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