7 research outputs found

    The importance of wavelength for tight temperature control during µ-laser assisted machining

    Get PDF
    The area of single point diamond turning of brittle materials like semiconductors and ceramics is significantly benefitted by incorporation of laser assistance. In a new developmental technology that is now recognized as micro-laser-assisted machining (μ-LAM), a laser is shone through a diamond tool to soften the high-pressure phase transformed ductile machining phases that in turn allows thermal softening and thereby enables a higher material removal rate during ductile mode machining. One of the lasers currently used in μ-LAM is the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operating at 100 W (continuous wave) at the wavelength of 1064 nm. Although this configuration has worked to the benefit of the technology, here we report futuristic developments that will significantly enhance temperature control by selecting a laser wavelength according to the material being machined, allowing tunable machining properties. The concept is illustrated with sample calculations for μ-LAM of silicon, and it appears to offer better target temperatures, thus enhancing the performance of the μ-LAM process

    Suppressing scratch-induced brittle fracture in silicon by geometric design modification of the abrasive grits

    Get PDF
    The overarching goal of this research was to investigate the application of spherically shaped abrasive particles in achieving ductile-mode cutting. Scratching experiments were carried out to assess the differences between arbitrarily and spherically shaped diamond and tungsten carbide (WC) grits in inducing brittle fracture or ductile plasticity in single-crystal silicon. It was observed that the arbitrarily shaped particles produce brittle fracture in contrast to the spherically shaped grits. The sharp edges and corners of grits result in high tensile stress-concentrated regions causing cracking and spalling. Contrary to this, spherically shaped WC particles induce uniform cutting pressure, which suppresses the extent of the brittle fracture and the mode of material removal was completely dominated by ductile-cutting until a threshold load for ductile-to-brittle transition (the first cracks appearance). These observations are expected to provide a suitable pathway in making the Diamond Wire Sawing machining operations more robust by providing a control on brittle damage

    Surface defects incorporated diamond machining of silicon

    Get PDF
    Abstract This paper reports the performance enhancement benefits in diamond turning of the silicon wafer by incorporation of the surface defect machining (SDM) method. The hybrid micromachining methods usually require additional hardware to leverage the added advantage of hybrid technologies such as laser heating, cryogenic cooling, electric pulse or ultrasonic elliptical vibration. The SDM method tested in this paper does not require any such additional baggage and is easy to implement in a sequential micro-machining mode. This paper made use of Raman spectroscopy data, average surface roughness data and imaging data of the cutting chips of silicon for drawing a comparison between conventional single-point diamond turning (SPDT) and SDM while incorporating surface defects in the (i) circumferential and (ii) radial directions. Complementary 3D finite element analysis (FEA) was performed to analyse the cutting forces and the evolution of residual stress on the machined wafer. It was found that the surface defects generated in the circumferential direction with an interspacing of 1 mm revealed the lowest average surface roughness (Ra) of 3.2 nm as opposed to 8 nm Ra obtained through conventional SPDT using the same cutting parameters. The observation of the Raman spectroscopy performed on the cutting chips showed remnants of phase transformation during the micromachining process in all cases. FEA was used to extract quantifiable information about the residual stress as well as the sub-surface integrity and it was discovered that the grooves made in the circumferential direction gave the best machining performance. The information being reported here is expected to provide an avalanche of opportunities in the SPDT area for low-cost machining solution for a range of other nominal hard, brittle materials such as SiC, ZnSe and GaAs as well as hard steels.</jats:p

    Dental caries in primary and permanent teeth in children's worldwide, 1995 to 2019: a systematic review and meta-analysis

    Get PDF
    Background: Early childhood caries (ECC) is a type of dental caries in the teeth of infants and children that is represented as one of the most prevalent dental problems in this period. Various studies have reported different types of prevalence of dental caries in primary and permanent teeth in children worldwide. However, there has been no comprehensive study to summarize the results of these studies in general, so this study aimed to determine the prevalence of dental caries in primary and permanent teeth in children in different continents of the world during a systematic review and meta-analysis. Methods: In this review study, articles were extracted by searching in the national and international databases of SID, MagIran, IranMedex, IranDoc, Cochrane, Embase, ScienceDirect, Scopus, PubMed, and Web of Science (ISI) between 1995 and December 2019. Random effects model was used for analysis and heterogeneity of studies was evaluated by using the I2 index. Data were analyzed by using the Comprehensive Meta-Analysis (Version 2) software. Findings: In this study, a total of 164 articles (81 articles on the prevalence of dental caries in primary teeth and 83 articles on the prevalence of dental caries in permanent teeth) were entered the meta-analysis. The prevalence of dental caries in primary teeth in children in the world with a sample size of 80,405 was 46.2% (95% CI: 41.6–50.8%), and the prevalence of dental caries in permanent teeth in children in the world with a sample size of 1,454,871 was 53.8% (95% CI: 50–57.5%). Regarding the heterogeneity on the basis of meta-regression analysis, there was a significant difference in the prevalence of dental caries in primary and permanent teeth in children in different continents of the world. With increasing the sample size and the year of study, dental caries in primary teeth increased and in permanent teeth decreased. Conclusion: The results of this study showed that the prevalence of primary and permanent dental caries in children in the world was found to be high. Therefore, appropriate strategies should be implemented to improve the aforementioned situation and to troubleshoot and monitor at all levels by providing feedback to hospitals

    The importance of wavelength for tight temperature control during μ-laser-assisted machining

    Get PDF
    The area of single point diamond turning of brittle materials like semiconductors and ceramics is significantly benefitted by incorporation of laser assistance. In a new developmental technology that is now recognized as micro-laser-assisted machining (μ-LAM), a laser is shone through a diamond tool to soften the high-pressure phase transformed ductile machining phases that in turn allows thermal softening and thereby enables a higher material removal rate during ductile mode machining. One of the lasers currently used in μ-LAM is the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operating at 100 W (continuous wave) at the wavelength of 1064 nm. Although this configuration has worked to the benefit of the technology, here we report futuristic developments that will significantly enhance temperature control by selecting a laser wavelength according to the material being machined, allowing tunable machining properties. The concept is illustrated with sample calculations for μ-LAM of silicon, and it appears to offer better target temperatures, thus enhancing the performance of the μ-LAM process

    Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis

    No full text
    corecore