14 research outputs found

    Capacitive power transfer for maritime electrical charging applications

    Get PDF
    Wireless power transfer can provide the convenience of automatic charging while the ships or maritime vehicles are docking, mooring, or in a sailing maneuver. It can address the challenges facing conventional wired charging technologies, including long charging and queuing time, wear and tear of the physical contacts, handling cables and wires, and electric shock hazards. Capacitive power transfer (CPT) is one of the wireless charging technologies that has received attention in on-road electric vehicle charging applications. By the main of electric fields, CPT offers an inexpensive and light charging solution with good misalignment performance. Thus, this study investigates the CPT system in which air and water are the separation medium for the electrical wireless charging of small ships and unmanned maritime vehicles. Unlike on-road charging applications, air or water can be utilized as charging mediums to charge small ships and unmanned maritime vehicles. Because of the low permittivity of the air, the air-gapped capacitive coupling in the Pico Farad range requires a mega-hertz operating frequency to transfer power over a few hundred millimeters. This study examines an air-gapped CPT system to transfer about 135 W at a separation distance of 50 mm, a total efficiency of approximately 83.9%, and a 1 MHz operating efficiency. At 13.56 MHz, the study tested a shielded air-gapped CPT system that transfers about 100 W at a separation distance of 30 mm and a total efficiency of about 87%. The study also examines the underwater CPT system by submerging the couplers in water to increase the capacitive coupling. The system can transfer about 129 W at a separation distance of 300 mm, a total efficiency of aboutapproximately%, and a 1.1 MHz operating efficiency. These CPT systems can upscale to provide a few kW for small ships and unmanned maritime vehicles. But they are still facing several challenges that need further investigations

    A Review of Power Converters for Ships Electrification

    Get PDF
    Fully electric ships have become popular to meet the demand for emission-free transportation and improve ships' functionality, reliability, and efficiency. Previous studies reviewed the shipboard power systems, the different types of shipboard energy storage devices, and the influences of the shore-to-ship connection on ports' electrical grid. However, the converter topologies used in the electrification of ships have received very little attention. This article presents a comprehensive topological review of currently available shore-to-ship and shipboard power converters in the literature and on the market. The main goal is to anticipate future trends and potential challenges to stimulate research to accelerate more efficient and reliable electric ships

    Under Seawater Capacitive Power Transfer for Maritime Charging Applications

    Get PDF
    Underwater capacitive power transfer (CPT) can provide an inexpensive and light electric charging solution with good misalignment tolerance for unmanned maritime vehicles. This paper investigates the effect of the changing of the frequency and the distance on the power transfer and overall efficiency of the underwater CPT system, considering the dielectric losses of the medium. It also proposes and validates a mathematical model for calculating the maximum available efficiency of the system. Using series compensations, the proposed CPT can transfer 48 W at 500 mm, 48 V input voltage, 516 kHz, and 54%

    Investigation of wireless electrification for a reconfigurable manufacturing cell

    Get PDF
    Reconfigurable manufacturing systems (RMS) with a rearrangeable structure can quickly adjust their productivity to meet the dynamic market changes and the demand for high-variety products. Industry 4.0 technologies have enhanced the RMS flexibility and made the automation of the reconfiguration of the manufacturing system possible. As an Industry 4.0 technology, wireless power transfer (WPT) can further increase the flexibility of RMS by providing safe, reliable, and maintenance-free autonomous charging. This paper examines the wireless electrification of RMS by investigating different WPT configurations that increase flexibility and autonomy, creating a highly flexible RMS. It also proposes a battery charging platform for further enhancement of the flexibility of RMS. As a low-cost WPT solution, the paper tests capacitive charging systems. The proposed charging system has about 135 W power transfer capability at a 5 cm distance and about 84% efficiency

    A Class-E-Based Resonant AC-DC Converter With Inherent PFC Capability

    Get PDF
    This paper investigates the use of the class-E inverter for power factor correction (PFC) applications. Analytical and state-space models are derived showing the class-E inverter’s capability of achieving inherent PFC operation with a constant duty cycle. The inherent PFC operation limits the controller responsibility to the regulation of the output voltage, which is key for resonant converters with challenging control. A converter incorporating a diode bridge, a class-E inverter, and a class-D rectifier is presented for the PFC stage in single-phase offline converters. A prototype is designed to validate the analysis and presented design method. The prototype operates with zero-voltage switching (ZVS) across the load range and achieves up to 211 W of output power at an efficiency of 88%, with an inherent power factor of 0.99 and a total harmonic distortion (THD) of 8.8 %. Frequency modulation is used to achieve lower output power down to 25 W, with a power factor of 0.95, THD of 28 %, and an efficiency of 88 %

    Conformal Transformation Analysis of Capacitive Wireless Charging

    Get PDF
    This paper studies the capacitive coupling in a capacitive power transfer (CPT) system designed for charging applications. It proposes mathematical models using the conformal transformation for calculating air-gapped and underwater capacitance and verifies the proposed models using COMSOL multiphysics and measurements. The measured results show that we can achieve nano-farad capacitance ranges if we submerge the capacitor in seawater. The seawater’s capacitance slightly changes when we increase the gap distance or the operating frequency. As the under seawater CPT system can be an attractive option for loosely-coupled charging applications, we further examine the system by focusing on the crosscoupling effects. The results show that the cross-coupling between the plate degrades the system’s power transfer capability and efficiency. With negligible cross-coupling effects, the system gives 129 W output power at an efficiency of 81.2%

    Design Considerations of Capacitive Power Transfer Systems

    Get PDF
    Capacitive power transfer (CPT) is a near-field wireless power transfer (WPT) technology that has attracted attention in different charging applications. By utilizing electric fields, CPT gives charging systems advantages in terms of cost, weight, flexibility, and mobility. This paper surveys a number of empirical published works in a period between 2015 and 2023. Additionally, it discusses theoretical and practical design considerations of a CPT system to understand and improve the technology and its applications. The paper studies the one- and two-port measuring approaches using vector network analyzers to determine the coupling parameters and compares the measurements to the simulated values using COMSOL Multiphysics ©. The two-port approach gives more accurate results than the one-port approach. The paper designs and tests a 13.56MHz CPT system using the two-port measurement results. The system transfers 100W at 87.4% efficiency and 30mm separation distance. Lastly, the paper discusses the design limitations and challenges of the CPT systems, aiming to emphasize the design obstacles that can drive the advancement of the CPT systems for wireless charging applications

    Optimal Solutions for Underwater Capacitive Power Transfer

    Get PDF
    Capacitive power transfer (CPT) has attracted attention for on-road electric vehicles, autonomous underwater vehicles, and electric ships charging applications. High power transfer capability and high efficiency are the main requirements of a CPT system. This paper proposes three possible solutions to achieve maximum efficiency, maximum power, or conjugate-matching. Each solution expresses the available load power and the efficiency of the CPT system as functions of capacitive coupling parameters and derives the required admittance of the load and the source. The experimental results demonstrated that the available power and the efficiency decrease by the increasing of the frequency from 300 kHz to 1 MHz and the separation distance change from 100 to 300 mm. The maximum efficiency solution gives 83% at 300 kHz and a distance of 100 mm, while the maximum power solution gives the maximum normalized power of 0.994 at the same frequency and distance. The CPT system can provide a good solution to charge electric ships and underwater vehicles over a wide separation distance and low-frequency ranges

    Maximum Available Power of Undersea Capacitive Coupling in a Wireless Power Transfer System

    No full text
    This paper studies the maximum available power of a dissipative capacitive power transfer (CPT) system submerged in seawater. The CPT system's maximum power capability is driven using the network theory, precisely the conjugate-image approach. The equations of the maximum available load power and the system's corresponding efficiency are expressed as a function of the capacitive coupling parameters. The experimental results demonstrate that the maximum available power and the corresponding efficiency decreases by a maximum of 10%, which occurs at 1.4 MHz, when the plates' separation distance change from 100 mm to 300 mm. Besides, the system has higher power transfer capability and higher efficiency at a low-frequency range than a high one. The maximum available load power decreases by about 22.5% when increasing the frequency from 300 kHz to 1.4 MHz. Thus, the CPT system can provide a good solution to charge electric ships and underwater vehicles over a wide separation distance and low-frequency range

    Maximum Available Power of Undersea Capacitive Coupling in a Wireless Power Transfer System

    No full text
    This paper studies the maximum available power of a dissipative capacitive power transfer (CPT) system submerged in seawater. The CPT system's maximum power capability is driven using the network theory, precisely the conjugate-image approach. The equations of the maximum available load power and the system's corresponding efficiency are expressed as a function of the capacitive coupling parameters. The experimental results demonstrate that the maximum available power and the corresponding efficiency decreases by a maximum of 10%, which occurs at 1.4 MHz, when the plates' separation distance change from 100 mm to 300 mm. Besides, the system has higher power transfer capability and higher efficiency at a low-frequency range than a high one. The maximum available load power decreases by about 22.5% when increasing the frequency from 300 kHz to 1.4 MHz. Thus, the CPT system can provide a good solution to charge electric ships and underwater vehicles over a wide separation distance and low-frequency range
    corecore