19 research outputs found

    Synthesis and Characterization of Soluble Thiophene-Selenophene- and Tellurophene-Vinylene Copolymers

    Get PDF
    Organic electronic devices based on polymers received significant attention in the last decade, especially for organic photovoltaics (OPVs) and field-effect transistors (OFETs) despite their performances and stability clearly falling short of today's state-of-the-art crystalline silicon or copper indium germanium selenide (CIGS)-based devices. Flexibility in the manufacturing, light weight, lower fabrication cost, ease of integration into various devices, and large area coating are some of the major potential advantages of polymers over inorganic devices. 1 Among organic polymers, conjugated polymers attracted widespread attention for a wide range of applications. Thiophene-containing conjugated polymers, especially, poly(3-alkylthiophne) (P3AT) has been subjected to intensive research over last decade due to their excellent optical and electronic properties. 2 Moreover, poly(thienylenevinylene) (PTV) class of polymers displays high charge carrier mobilities in OFETs and promising performances in OPVs. 3 When a single solubilizing alkyl chain is included onto the PTV backbone, the resulting copolymer can be solution processed for optical devices. One simple strategy to manipulate the copolymer property is by changing the heteroatom of the thiophene from sulfur to other chalcogens, selenium or tellurium. 4 Theoretical calculations indicated that substitution with selenium or tellurium may reduce the optical band gap of the resulting polymer in comparison to their sulfur-containing analogues. Inclusion of larger and more polarizable selenium or tellurium also expected to have a strong influence on the charge transport properties. Notably, Heeney and co-workers showed that the band gap of P3AT can be reduced by as much as 0.3 eV by only substituting sulfur with selenium in the polymer backbone. 5 The reduction of band gap resulted from larger and more polarizable selenium facilitate better π orbital overlap with the polymer backbone and thus stabilize the polymer LUMO (lowest unoccupied molecular orbital). Low-lying LUMO levels are believe to facilitate both electron injection and transport. Recently, PBDTT-SeDPP polymer showed a high Jsc of 16.8 mA/cm2, a Voc of 0.69 V, and a FF of 62%, enabling the best PCE of 7.2%. 6 However, despite fascinating properties of selenium substituted polymers, tellurium containing polymers are less explored, may be due to challenging tellurium chemistry. Jahnke and co-workers recently reported first soluble tellurophene polymer, poly(3-alkyltellurophene) (P3ATe), prepared by both electrochemical and Kumuda coupling polymerization method. 7 Even though, preliminary PCE (1.1%) was modest, tellurium substitution resulted in red-shifted film absorption. In this contribution, we report the synthesis and characterization of vinylene copolymers containing 3-alkylthiophene, selenophene or tellurophene. This allows us systematically investigate the role of selenium or tellurium on the polymer properties. Here, we report the first synthesis of novel 2,5-dibrominated 3-alkyltellurophene monomer and its Pd[0]-catalyzed copolymerization with (E)1,2-bis(tributylstannyl)ethylene to afford poly(3-alkyltellurophenylenevinylene) (P3ATeV). 8 We compare the optoelectronic properties of P3ATeV with analogous sulfur (P3ATV) and selenium (P3ASV) containing polymers. Preliminary OFET data will also be incorporated. Scheme 1. Structures of P3AX, P3AXV copolymers.Qscienc

    Tailoring the deposition of MoSe2 on TiO2 nanorods arrays via radiofrequency magnetron sputtering for enhanced photoelectrochemical water splitting

    Get PDF
    MoSe2/1 D TiO2 nanorods (NRs) heterojunction assembly was systematically fabricated, and its photoelectrocatalytic properties were investigated. The fabrication process involves the growth of 1D TiO2 NRs arrays on FTO substrates using hydrothermal synthesis followed by the deposition of MoSe2 nanosheets on the TiO2 NRs using radiofrequency magnetron sputtering (RF magnetron sputtering). The photoelectrochemical properties of the heterojunction were explored and optimized as a function of the thickness of the MoSe2 layer, which was controlled by the sputtering time. The MoSe2 grows perpendicularly on TiO2 NRs in a 2D layered structure, maximizing the exposed active edges, an essential aspect that permits maximum exploitation of deposited MoSe2. Compared to pure TiO2 NRs, the heterojunction nanostructured assembly displayed excellent spectral and photoelectrochemical properties, including more surface oxygen vacancies, enhanced visible-light absorption, higher photocurrent response, and decreased charge transfer resistance. In particular, the sample synthesized by sputtering of MoSe2 for 90 s, i.e., MoSe2@TiO2-90 s, depicted the highest current density (1.86 mA cm−2 at 0.5 V vs. Ag/AgCl) compared to other samples. The excellent photoelectrochemical activity of the heterojunction stemmed from the synergy between tailored loading of MoSe2 nanosheets and the 1D structure of TiO2 NRs, which afford a high surface/volume ratio, effective charge separation, fast electron transfer, and easy accessibility to the MoSe2 active edges. These factors boost the catalytic activity.This work was made possible by NPRP Grant no. NPRP 12S-0304-190218 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library.Scopu

    Microwave-Assisted Solvothermal Synthesis of Mo-Doped TiO2 with Exceptional Textural Properties and Superior Adsorption Kinetics

    Get PDF
    Assigned to their outstanding physicochemical properties, TiO2-based materials have been studied in various applications. Herein, TiO2 doped with different Mo contents (Mo-TiO2) was synthesized via a microwave-assisted solvothermal approach. This was achieved using titanium (IV) butoxide and molybdenum (III) chloride as a precursor and dodecylamine as a surface directing agent. The uniform effective heating delivered by microwave heating reduced the reaction time to less than 30 min, representing several orders of magnitude lower than conventional heating methods. The average particle size ranged between 9.7 and 27.5 nm and it decreased with increasing the Mo content. Furthermore, Mo-TiO2 revealed mesoporous architectures with a high surface area ranging between 170 and 260 m2 g−1, which is superior compared to previously reported Mo-doped TiO2. The performance of Mo-TiO2 was evaluated towards the adsorption of Rhodamine B (RhB). In contrast to TiO2, which revealed negligible adsorption for RhB, Mo-doped samples depicted rapid adsorption for RhB, with a rate that increased with the increase in Mo content. Additionally, Mo-TiO2 expressed enhanced adsorption kinetics for RhB compared to state-of-the-art adsorbents. The introduced synthesis procedure holds a grand promise for the versatile synthesis of metal-doped TiO2 nanostructures with outstanding physicochemical properties.NPRP Grant no. NPRP 12S-0304-190218 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Solution combustion synthesis of Ni/La2O3for dry reforming of methane: Tuning the basicity via alkali and alkaline earth metal oxide promoters

    No full text
    The production of syngas via dry reforming of methane (DRM) has drawn tremendous research interest, ascribed to its remarkable economic and environmental impacts. Herein, we report the synthesis of K, Na, Cs, Li, and Mg-promoted Ni/La2O3 using solution combustion synthesis (SCS). The properties of the catalysts were determined by N2 physisorption experiments, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), and H2-TPR (temperature programmed reduction). In addition, their catalytic performance towards DRM was evaluated at 700 °C. The results demonstrated that all catalysts exhibited porous structures with high specific surface area, in particular, Mg-promoted Ni/La2O3 (Mg–Ni–La2O3) which depicted the highest surface area and highest pore volume (54.2 m2 g−1, 0.36 cm3 g−1). Furthermore, Mg–Ni–La2O3 exhibited outstanding catalytic performance in terms of activity and chemical stability compared to its counterparts. For instance, at a gas hourly space velocity (GHSV) of 30 000 mL g−1 h−1, it afforded 83.2% methane conversion and 90.8% CO2 conversion at 700 °C with no detectable carbon deposition over an operating period of 100 h. The superb DRM catalytic performance of Mg–Ni–La2O3 was attributed to the high specific surface area/porosity, strong metal-support interaction (MSI), and enhanced basicity, in particular the strong basic sites compared to other promoted catalysts. These factors remarkably enhance the catalytic performance and foster resistance to coke deposition.This publication was supported by Qatar University, internal grant number QUCG-CENG-19/20-7. The ?ndings achieved herein are solely the responsibility of the authors. The authors also acknowledge the technical support of Central Laboratories Unit (CLU), Center for Advanced Materials (CAM), and Gas Processing Center (GPC), Qatar University, Doha, Qatar.Scopu

    Controlled design of PtPd nanodendrite ornamented niobium oxynitride nanosheets for solar-driven water splitting

    No full text
    Developing efficient photocatalysts for the water splitting reaction is crucial in a fuel cell reaction. Herein, we present a facile road-map for one-pot fabrication of PtPd nanodendrite (ND) ornamented niobium oxynitride nanosheets (PtPd/NbON) for solar-driven water splitting. This was achieved by annealing Nb2O5 under NH3 to form NbON nanosheets which were subsequently used as starting seeds for the simultaneous growth and self-assembly of PtPd NDs with the assistance of Pluronic F127. The water oxidation performance of PtPd/NbON was substantially superior to those of NbON and Nb2O5. This is ascribed to the combination of NbON with its great visible-light-harvesting properties and narrow band gap and the unique catalytic merits of PtPd NDs. 2018 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.This work was made possible by NPRP Grant no. NPRP 7-485-1-091 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Versatile Synthesis of Pd and Cu Co-Doped Porous Carbon Nitride Nanowires for Catalytic CO Oxidation Reaction

    No full text
    Developing efficient catalyst for CO oxidation at low-temperature is crucial in various industrial and environmental remediation applications. Herein, we present a versatile approach for controlled synthesis of carbon nitride nanowires (CN NWs) doped with palladium and copper (Pd/Cu/CN NWs) for CO oxidation reactions. This is based on the polymerization of melamine by nitric acid in the presence of metal-precursors followed by annealing under nitrogen. This intriguingly drove the formation of well-defined, one-dimensional nanowires architecture with a high surface area (120 m2 g−1) and doped atomically with Pd and Cu. The newly-designed Pd/Cu/CN NWs fully converted CO to CO2 at 149 °C, that was substantially more active than that of Pd/CN NWs (283 °C) and Cu/CN NWs (329 °C). Moreover, Pd/Cu/CN NWs fully reserved their initial CO oxidation activity after 20 h. This is mainly attributed to the combination between the unique catalytic properties of Pd/Cu and outstanding physicochemical properties of CN NWs, which tune the adsorption energies of CO reactant and reaction product during the CO oxidation reaction. The as-developed method may open new frontiers on using CN NWs supported various noble metals for CO oxidation reaction

    Solution combustion synthesis of Ni-based hybrid metal oxides for oxygen evolution reaction in alkaline medium

    No full text
    Oxygen evolution reaction (OER) has arisen as an outstanding technology for energy generation, conversion, and storage. Herein, we investigated the synthesis of nickel-based hybrid metal oxides (NixM1−xOy) and their catalytic performance towards OER. NixM1−xOy catalysts were synthesized by solution combustion synthesis (SCS) using the metal nitrates as oxidizer and glycine as fuel. Scanning electron microscope (SEM) micrographs display a porous morphology for the hybrid binary NixM1−xOy, the common feature of combusted materials. X-ray diffraction (XRD) of NixM1−xOy depicted well-defined diffraction peaks, which confirms the crystalline nature of synthesized catalysts. The particle size of as-synthesized materials ranges between 20 and 30 nm with a mesoporous nature as revealed by N2-physisorption. The electrocatalytic performance of the as-prepared materials was evaluated towards OER in alkaline medium. Among them, NixCo1−xOy showed the best catalytic performance. For instance, it exhibited the lowest overpotential at a current density of 10 mA cm−2 (404 mV), onset potential (1.605 V), and Tafel slope (52.7 mV dec−1). The enhanced electrocatalytic performance of NixCo1−xOy was attributed to the synergism between cobalt and nickel and the alteration of the electronic structure of nickel. Also, NixCo1−xOy afforded the highest Ni3+/Ni2+ when compared to other electrocatalysts. This leads to higher oxidation states of Ni species, which promote and improve the electrocatalytic activity.The authors acknowledge the technical support of Central Laboratories Unit (CLU), Center for Advanced Materials (CAM), and Gas Processing Center (GPC), Qatar University, Doha, Qatar

    Design of Ni/La2O3 catalysts for dry reforming of methane: Understanding the impact of synthesis methods

    No full text
    Fine-tuning of materials properties, particularly the catalytic properties, through innovative synthesis procedures has gained an increased research interest in the last decades. It is well known that synthesis procedures have considerable impact on the physio-chemical properties of the synthesized materials even if the chemical composition is maintained. Herein, we investigated the impact of selected synthesis methods on the catalytic performance of Ni/La2O3 for the dry reforming of methane (DRM), a challenging reaction known for severe coking. Although this catalyst has been frequently studied for DRM, however, tuning the structure-activity relationship by varying the synthesis routes has not been reported. Herein, the chosen synthesis techniques; for example the solution combustion synthesis (Ni/La-SC), sol-gel (Ni/La-SG), homogeneous precipitation (Ni/La-HP), solvothermal (Ni/La-ST), and modified oleylamine-assisted synthesis (Ni/La-ME); considerably affected the morphology, metal support interaction (MSI), and surface area of Ni/La2O3 catalysts leading to variation in their performance for DRM. The investigated catalysts were thoroughly characterized by using SEM-EDX, TEM, N2-physisorption, XRD, XPS, and H2-TPR to understand the structural properties. Their catalytic performance towards the DRM was evaluated by varying the temperature between 550 and 800 °C. DRM experiments demonstrated that among the studied catalysts, Ni/La-SC showed the best performance for DRM with a high catalytic activity and coking resistance. For instance, Ni/La-SC revealed the highest CO2 and CH4 conversions i.e. 97.9 ± 1.5% and 96.6 ± 1.8%, respectively at 800 °C. The same sample revealed the highest hydrogen yield i.e. 71.9% and the highest H2/CO ratio i.e. 1.03 ± 0.013 at the same temperature. The results revealed that Ni/La-SC demonstrated the lowest increment (20.9%) in the Ni crystallite size after DRM reaction, highest durability, and the lowest rate of coke formation (42 ± 5.2 mg C/gcatalyst) over an operating period of 100 h at 800 °C. The outstanding performance of Ni/La-SC catalyst was credited to the small crystallite size of Ni, high Ni0/Ni2+ ratio, high BET area, and a good dispersion of nickel sites over the La2O3 support. The obtained results may open new frontiers for size and shape-controlled synthesis of nanostructured metals/metal oxides catalysts with controllable morphologies and dispersion that can lead to desirable catalytic properties.This publication was supported by Qatar University , internal grant number QUCG-CENG-19/20-7 . The findings reported herein are solely the responsibility of the authors.Scopu

    Natural clay-supported palladium catalysts for methane oxidation reaction: Effect of alloying

    No full text
    The catalytic combustion of methane (CCM) has been extensively studied owing to the wide use of methane in motor vehicles and power generation turbines. However, the absence of polarizability and the high C-H bond strength are considered to be the main drawbacks that limit its oxidation by traditional catalytic converters. Palladium-based catalysts are recognized as the benchmark catalysts for methane oxidation, especially under oxidizing conditions, and their activity is dependent on different parameters such as size, dispersion, and the nature of the support. Additionally, metal oxides are the most common supports used for CCM; however, they can become saturated with water, especially during steady-state operation at low temperatures, owing to their hydrophilic nature. This causes saturation of the active sites with OH species, which poisons the active centers of the catalyst, prevents activation of methane molecules, and induces catalyst sintering. Herein, we reported the synthesis of a binary palladium nanoalloy on a halloysite nanotube support (PdM@Hal). This one-pot synthesis procedure was performed via ultrasound-enhanced reduction of metal precursors in aqueous solution containing dispersed halloysite nanotubes, using NaBH4 as reducing agent. Transmission electron microscopy revealed that the synthesized PdM@Hal catalysts preserved the morphology of the pristine support after synthesis and calcination, with good dispersion of the catalyst on the surface of the support. Promoted metal-support interactions revealed enhanced catalytic performance, following the order PdNi > PdCo > Pd > PdCu, with activation energies of 68-94 kJ mol-1. This journal is - The Royal Society of Chemistry.Scopu
    corecore