9 research outputs found

    Preparation and Preliminary Dielectric Characterization of Structured C\u3csub\u3e60\u3c/sub\u3e-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction

    Get PDF
    Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60) polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene) networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics

    Electrospun highly corrosion-resistant polystyrene–nickel oxide superhydrophobic nanocomposite coating

    Get PDF
    A key challenge in producing superhydrophobic coatings (SHC) is to tailor the surface morphology on the micro-nanometer scale. In this work, a feasible and straightforward route was employed to manufacture polystyrene/nickel oxide (PSN) nanocomposite superhydrophobic coatings on aluminum alloys to mitigate their corrosion in a saline environment. Different techniques were employed to explore the influence of the addition of NiO nanoparticles to the as-prepared coatings. PSN-2 composite with ~ 4.3 wt% of NiO exhibited the highest water contact angle (WCA) of 155° ± 2 and contact angle hysteresis (CAH) of 5°. Graphic abstract: EIS Nyquist plots of 3 g of electrospun polystyrene coatings (a) without and with (b) 0.1, (c) 0.15, and (d) 0.2 g of NiO. [Figure not available: see fulltext.

    Theoretical and experimental insights into the C-steel aqueous corrosion inhibition at elevated temperatures in 1.0M HCl via multi-carbonyl Gemini cationic surfactants

    Get PDF
    Despite corrosion being an inevitable process, researchers strive to control corrosion. In this study, our goal was to prepare two amido Gemini cationic surfactants, LAPG and MAPG, each with different alkyl chains and multiple carbonyl groups as rich electronic rich centers. We aimed to evaluate these surfactants as potential corrosion inhibitors for carbon steel (CS) in 1M HCl at temperatures of 25-55 ± 0.1°C. In theoretical investigations, DFT parameters and Mont Carlo simulation were run to predict the adsorption affinity and reactive sites of the LAPG and MAPG molecules. Their efficacy was investigated experimentally considering weight loss and electrochemical techniques. The Tafel polarization revealed that at 0.1mM of LAPG and MAPG, the corrosion current density (i corr) of CS was reduced to the lowest extent (75.56 and 53.82μAcm-2) compared to 529.3μAcm-2 in the absence of the inhibitors. EIS data suggests the enhancement of the thickness of the adsorbed layers of the studied compounds from the decrease of the double-layer capacitance C dl values. The Langmuir isotherm explained the adoption phenomena of these compounds at 25-55 ± 0.1°C. Activation and adsorption thermodynamic parameters predicted the chemisorption behavior of these molecules onto the steel surface. AFM and XPS tools confirm the CS surface protection due to these inhibitors' adsorbed layer. A parallel study showed the superiority of these corrosion inhibitors in HCl compared with those reported earlier, making these compounds highly promising corrosion inhibitors, especially in high-temperature acidic environments

    Synthesis of Gemini cationic surfactants based on natural nicotinic acid and evaluation of their inhibition performance at C-steel/1 M HCl interface: Electrochemical and computational investigations

    Get PDF
    Herein, we prepare effective Gemini cationic surfactants (CSII, CSIV) and characterize them using FT-IR and 1HNMR spectroscopy. The adsorptive properties of CSII and CSIV at HCl/air and C-steel/HCl interfaces were examined with surface tension and electrochemical parameters, respectively. The critical micelle concentration (CMC) of the CSII and CSIV indicated their adsorption affinity at the HCl/air interface. Where, aliphatic chains increase surface coverage percentage and aid in surfactant adsorption. The electrochemical parameters of C-steel in 1 M HCl were studied using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) at different temperatures. The charge transfer resistance of the C-steel electrode was enhanced from 28.2 Ω.cm2 to 770.79 and 831.45 Ω.cm2 after adding 5 × 10−4 M of CSII and CSIV, respectively. Both CSII and CSIV act as mixed inhibitors with inhibition performance exceeding 97% due to their highly adsorption affinity. The chemical adsorption affinity of these compounds is suggested by the higher adsorption energy (∆G*ads) values (>−40 kJ mol−1) according to the Langmuir isotherm model. The theoretical calculations including DFT, and Monte Carlo simulation (MCs) provide insight into the relationship between corrosion inhibition and molecular structure, where the calculated parameters agree with the experimental results

    Impact of Prolonged Exposure to Sour Service on the Mechanical Properties and Corrosion Mechanism of NACE Carbon Steel Material Used in Wet Sour Gas Multiphase Pipeline

    No full text
    The oil and gas industry is involved with severe corrosive/sour environmental conditions due to H2S, CO2, and moisture content. The National Association of Corrosion Engineers (NACE) has developed standards to enable users to select suitable materials for given sour conditions which utilize laboratory testing. A failed piping sample (API-5L-X65) was removed from a pipeline after 15 years of service. Optical microscopy was used to compare the microstructure of the corroded sample near the exposed surface to both the service environment, and further away from it. More-over, pitted samples were analyzed using a scanning electron microscope coupled with energy dispersive X-ray (SEM/EDS) to understand the deposits’ morphology. Furthermore, XPS analysis proves the presence of a significant content of sulfur compound. Additionally, the mechanical properties of both corroded and non-corroded samples were evaluated and compared. Micro-hardness was carried out on the cross-section of the removed sample to understand any evident hardness variation from the inner diameter (ID) to the outer diameter (OD) of the piping. All the results suggest that prolonged service exposure has resulted in the development of micro defects, resulting in the reduction of strength and impact toughness, and the reduction in the hardness at the exposed surface of the corroded piping. Understanding the corrosion mechanism of pipelines exposed to sour media in the long-term helps in repair/replacement planning and extending the usable design life of the material, and paving the way for the oil and gas industry to develop additional ways to monitor the changes in the critical materials’ properties when exposed to sour service

    Evaluation of the Pitting Corrosion of Modified Martensitic Stainless Steel in CO<inf>2</inf> Environment Using Point Defect Model

    No full text
    Pitting corrosion is a significant concern for the broader application of stainless steel in modern industries in which metal and metal alloy are detached preferentially from susceptible parts on the surface, resulting in the creation of holes in passivated alloys that are exposed to an aqueous, neutral electrolyte containing corrosive species. Exposure of SS to brines leads to the localized loss of surface passivity and the onset of isolated pitting, which render the equipment or piping unfit for service. In the present study, the passive layer behavior and the pitting corrosion of the modified martensitic stainless steel (MMSS) were evaluated in a saturated CO2 environment (pH~5) with different NaCl concentrations and temperatures, using various electrochemical techniques. It was found that by increasing the temperature up to 60◦ C, the corrosion resistance of the MMSS increased; however, the corrosion rate dramatically increased at 80◦ C, indicating the destruction of the oxide layer. According to the point defect model (PDM) results, the calculated values of polarizability (α), metal cation diffusivity (D), and the rate of annihilation of cation vacancies (jm), reveal a strong dependence on the solution temperature

    Effect of the temperature on the passivity of the modified martensitic stainless steels

    No full text
    The limits and nature of the passive behavior exhibited by modified martensitic stainless steels (MMSS) is studied in brine solutions at different temperatures using electrochemical methods and the point defect model (PDM), in an environment at pH is 3 and temperatures up to 150°C, using autoclaves with CO2 gas up to 2.8 MPa. The results show that passivity on the MMSS is characterized by the metal cation vacancy diffusivity (D) which indicates that the passivity up to temperatures of 75°C is more stable than at higher temperatures up to 150°C. The value of D is used to describe the transition between the passive layers at the threshold temperature of 75°C; at which exhibits the largest stability. MMSS specimens passivated at 75°C exhibit higher passivity stability in experiments performed at 25°C, when compared the pre passivation, suggesting that the change experienced at 75°C is at least partially irreversible.The authors are thankful for the financial support from NPRP grants NPRP12S-0203-190038 from the Qatar National Research Fund (a member of the Qatar Foundation), as well as the co-funding from Qatar Shell Research & Technology Centre and Qatar Gas

    Preparation and Preliminary Dielectric Characterization of Structured C60-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction

    Get PDF
    Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60) polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene) networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics

    Electrospun highly corrosion-resistant polystyrene–nickel oxide superhydrophobic nanocomposite coating

    No full text
    A key challenge in producing superhydrophobic coatings (SHC) is to tailor the surface morphology on the micro-nanometer scale. In this work, a feasible and straightforward route was employed to manufacture polystyrene/nickel oxide (PSN) nanocomposite superhydrophobic coatings on aluminum alloys to mitigate their corrosion in a saline environment. Different techniques were employed to explore the influence of the addition of NiO nanoparticles to the as-prepared coatings. PSN-2 composite with ~ 4.3 wt% of NiO exhibited the highest water contact angle (WCA) of 155° ± 2 and contact angle hysteresis (CAH) of 5°. Graphic abstract EIS Nyquist plots of 3 g of electrospun polystyrene coatings (a) without and with (b) 0.1, (c) 0.15, and (d) 0.2 g of NiO.Other Information Published in: Journal of Applied Electrochemistry License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1007/s10800-021-01603-8</p
    corecore