2 research outputs found

    An improved model and performance analysis for grid-connected photovoltaic system in Oman

    Get PDF
    The PV systems' sources are environmentally friendly, but at the same time, they are constantly changing with time. When evaluating solar energy resources, it is necessary to consider the variability and effects of different environmental operation parameters like solar irradiances, ambient temperature, and module temperature. The study introduces a method to simulate an existing photovoltaic system using a mathematical model that permits intelligent strategies to optimise the efficiency and adjust the most effective operational parameters for the solar energy systems. A mathematical analysis for the data framework, including correlation and regression coefficients, was calculated to identify and chart the relationships between the system's most influential parameters and the generated power from the PV system. An improved mathematical model was built with the most influential parameters. The improved model was simple, accurate, and based on the loss ratio by eliminating the unknown parameters. The system's efficiency was analysed using an existing data framework-recorded hourly from 1 January 2017 to December 2018 for a grid-connected photovoltaic system installed in the south of Oman. The results showed that the most influential parameters on the efficiency were the module's solar irradiance and surface temperature. The operating parameters such as ambient temperature, wind speed, and air humidity had a negligible effect on the generated power compared to the cell temperatures and solar radiation. The dissipation factor was used in the new output current and voltage equations to stimulate the output power of the PV model. The improved model was validated in a MATLAB Simulink and showed a more promising output with a lower RMSE of 5 %. [Abstract copyright: © 2022 The Author(s).

    A Review of the Configurations, Capabilities, and Cutting-Edge Options for Multistage Solar Stills in Water Desalination

    Get PDF
    The desalination of saltwater is a viable option to produce freshwater. All the desalination processes are energy-intensive and can be carried out on a large scale. Therefore, producing freshwater using renewable energy sources is the most desirable option considering the current energy crisis and the effect that fossil-fuel-based energy has on our carbon footprint. In this respect, the tray-type still, one of several solar power desalination still varieties, is popular owing to its straightforward design, economic materials of construction, and minimal maintenance requirements, especially in isolated island regions with restricted energy and natural water supplies. The traditional tray-type solar power has a few drawbacks, such as the inability to recover latent heat from condensation, reduced thermal convection, a large heat capacity, and comparatively minimal driving power through evaporation. Therefore, the improvement of heat and mass transfer capabilities in tray-type stills has been the subject of many studies. However, there is a lack of a comprehensive review in the open literature that covers the design and operational details of multistage solar stills. The purpose of this paper is to present a thorough overview of the past research on multistage solar stills, in terms of configurations, capabilities, and cutting-edge options. In comparison to a unit without a salt-blocking formation, the review indicates that a multistage distillation unit may run continuously at high radiation and generate pure water that is around 1.7 times higher than a unit without a salt-blocking formation. The most effective deign is found to be “V”-shaped solar still trays that attach to four-stage stills, since they are less expensive and more economical than the “floor” (Λ-shape) design, which requires two collectors. Additionally, it can be stated that the unit thermal efficiency, solar percentage, and collected solar energy (over the course of a year) increase by 23%, 18%, and 24%, respectively, when the solar collectors are increased by 26% (at the constant inflow velocity of the water)
    corecore