69 research outputs found

    Cleaning of ceramic membranes for produced water filtration

    Get PDF
    The application of ceramic microfiltration membranes to the tertiary treatment of produced water from an Arabian Gulf oilfield has been studied using a dedicated pilot plant. Studies were based on a previously published protocol in which the retentate stream was recycled so as to successively increase the feed concentration throughout the experimental run. Chemical cleaning in place (CIP) was applied between each run and the flux and permeability recovery recorded for various cleaning protocols studied, the CIP being based on the combination of caustic soda (NaOH) and citric acid. Surface analysis of the membrane, and specifically its hydrophilicity, was also conducted. Results indicated the main influencing factor on permeability recovery from the CIP to be the employment of backflushing during the CIP itself. A final flux of 700 L m−2 h−1 was sustained through the application of 6 wt% NaOH with 6 wt% citric acid combined with backflushing at approximately twice the rate of the filtration cycle flux. A consideration of the impact of this flux value on the viability of two commercially-available ceramic membrane technologies indicated the footprint incurred to be slightly lower than that of the upstream induced gas flotation technology and corroborated a previously published estimate. The flux was sustained despite surface analysis indicating a loss of the innate hydrophilicity of the ceramic membrane

    The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reverse-transcription polymerase chain reaction

    Get PDF
    The newly identified Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease, particularly in people with comorbidities, requires further investigation. Studies in Qatar and elsewhere have provided evidence that dromedary camels are a reservoir for the virus, but the exact modes of transmission of MERS-CoV to humans remain unclear. In February 2014, an assessment was made of the suitability and sensitivity of different types of sample for the detection of MERS-CoV by real-time reverse-transcription polymerase chain reaction (RT-PCR) for three gene targets: UpE (upstream of the E gene), the N (nucleocapsid) gene and open reading frame (ORF) 1a. Fifty-three animals presented for slaughter were sampled. A high percentage of the sampled camels (79% [95% confidence interval 66.9-91.5%, standard error 0.0625]; 42 out of 53) were shown to be shedding MERS-CoV at the time of slaughter, yet all the animals were apparently healthy. Among the virus-positive animals, nasal swabs were most often positive (97.6%). Oral swabs were the second most frequently positive (35.7%), followed by rectal swabs (28.5%). In addition, the highest viral load, expressed as a cycle threshold (Ct) value of 11.27, was obtained from a nasal swab. These findings lead to the conclusion that nasal swabs are the candidate sample of choice for detecting MERS-CoV using RT-PCR technology in apparently healthy camels

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

    Get PDF
    Background: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar linked to two human cases of the infection in October, 2013. Methods: We took nose swabs, rectal swabs, and blood samples from all camels on the Qatari farm. We tested swabs with RT-PCR, with amplification targeting the E gene (upE), nucleocapsid (N) gene, and open reading frame (ORF) 1a. PCR positive samples were tested by different MERS-CoV specific PCRs and obtained sequences were used for phylogentic analysis together with sequences from the linked human cases and other human cases. We tested serum samples from the camels for IgG immunofluorescence assay, protein microarray, and virus neutralisation assay. Findings: We obtained samples from 14 camels on Oct 17, 2013. We detected MERS-CoV in nose swabs from three camels by three independent RT-PCRs and sequencing. The nucleotide sequence of an ORF1a fragment (940 nucleotides) and a 4·2 kb concatenated fragment were very similar to the MERS-CoV from two human cases on the same farm and a MERS-CoV isolate from Hafr-Al-Batin. Eight additional camel nose swabs were positive on one or more RT-PCRs, but could not be confirmed by sequencing. All camels had MERS-CoV spike-binding antibodies that correlated well with the presence of neutralising antibodies to MERS-CoV. Interpretation: Our study provides virological confirmation of MERS-CoV in camels and suggests a recent outbreak affecting both human beings and camels. We cannot conclude whether the people on the farm were infected by the camels or vice versa, or if a third source was responsible. Funding: European Union projects EMPERIE (contract number 223498), ANTIGONE (contract number 278976), and the VIRGO consortium

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Prevalence of somatisation and psychologisation among patients visiting primary health care centres in the State of Qatar

    Get PDF
    Background: Medically unexplained somatic complaints are among the most common clinical presentations in primary care in developing countries and they are considerable burden for patients and health care system. Objectives: The aim of this study was to determine the prevalence of somatisation in comparison to psychologisation among a sample of Qatari patients who were visiting primary health care (PHC) centres and to investigate the clinical and socio-demographic characteristics of somatisers (STs) and psychologisers (PGs). Method: The survey was conducted among PHC Qatari patients during the period from January to July 2007. About 2,320 patients were approached, of whom 1,689 agreed to participate and responded to the questionnaire. Among the studied Qatari patients, 404 patients were identified for clinical interview. The first stage of the study was conducted with the help of general practitioners, using the 12-item General Health Questionnaire. The second stage was carried out by a consultant using the Clinical Interview Schedule. A specific operational criterion was used to identify STs and PGs. Results: The prevalence rate of STs among the total studied sample was 12.4%, while the PGs were 11.5%. Among the identified psychiatric cases, the proportion of STs (52%) was higher than PGs (48%). Most of the diagnostic categories were more prevalent among PGs. The dissatisfaction at work and stressful life events within 12 months before the onset of the presenting symptoms were the three postulated determinants which were significantly more among STs than PGs. Conclusion: The prevalence of somatised mental disorder was little higher than the psychologised mental disorder. The prevalence of somatisation and psychologisation is comparable with other reported studies from the Middle-East and Western countries. Dissatisfaction at work and stressful life events were significantly higher among STs than PGs

    Isolation of MERS coronavirus from dromedary camel, Qatar, 2014

    Get PDF
    We obtained the full genome of Middle East respiratory syndrome coronavirus (MERS-CoV) from a camel in Qatar. This virus is highly similar to the human England/ Qatar 1 virus isolated in 2012. The MERS-CoV from the camel efficiently replicated in human cells, providing further evidence for the zoonotic potential of MERS-CoV from camels

    Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis

    Get PDF
    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne

    Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013–2014

    Get PDF
    We determined the presence of neutralizing antibodies to Middle East respiratory syndrome coronavirus in persons in Qatar with and without dromedary contact. Antibodies were only detected in those with contact, suggesting dromedary exposure as a risk factor for infection. Findings also showed evidence for substantial underestimation of the infection in populations at risk in Qatar
    corecore