12 research outputs found

    Post-vasectomy semen analysis: Optimizing laboratory procedures and test interpretation through a clinical audit and global survey of practices

    Get PDF
    Purpose: The success of vasectomy is determined by the outcome of a post-vasectomy semen analysis (PVSA). This article describes a step-by-step procedure to perform PVSA accurately, report data from patients who underwent post vasectomy semen analysis between 2015 and 2021 experience, along with results from an international online survey on clinical practice. Materials and Methods: We present a detailed step-by-step protocol for performing and interpretating PVSA testing, along with recommendations for proficiency testing, competency assessment for performing PVSA, and clinical and laboratory scenarios. Moreover, we conducted an analysis of 1,114 PVSA performed at the Cleveland Clinic’s Andrology Laboratory and an online survey to understand clinician responses to the PVSA results in various countries. Results: Results from our clinical experience showed that 92.1% of patients passed PVSA, with 7.9% being further tested. A total of 78 experts from 19 countries participated in the survey, and the majority reported to use time from vasectomy rather than the number of ejaculations as criterion to request PVSA. A high percentage of responders reported permitting unprotected intercourse only if PVSA samples show azoospermia while, in the presence of few non-motile sperm, the majority of responders suggested using alternative contraception, followed by another PVSA. In the presence of motile sperm, the majority of participants asked for further PVSA testing. Repeat vasectomy was mainly recommended if motile sperm were observed after multiple PVSA’s. A large percentage reported to recommend a second PVSA due to the possibility of legal actions. Conclusions: Our results highlighted varying clinical practices around the globe, with controversy over the significance of non-motile sperm in the PVSA sample. Our data suggest that less stringent AUA guidelines would help improve test compliance. A large longitudinal multi-center study would clarify various doubts related to timing and interpretation of PVSA and would also help us to understand, and perhaps predict, recanalization and the potential for future failure of a vasectomy.American Center for Reproductive Medicin

    The Impact of COVID-19 on Urology Practice in Oman

    Get PDF
    NON

    Survival after primary and deferred cystectomy for stage T1 transitional cell carcinoma of the bladder

    No full text
    Context: The optimal time of cystectomy for nonmuscle invasive bladder cancer (NMIBC) is controversial. Aim: This study aims at comparing cancer-specific survival in primary versus deferred cystectomy for T1 bladder cancer. Settings and Design: Between 1990 and 2004, a retrospective cohort of 204 patients was studied. Materials and Methods: Primary cystectomy at the diagnosis of NMIBC was performed in 134 patients (group 1) and deferred cystectomy was done after failed conservative treatment in 70 (group 2) Both groups were compared regarding patient and tumor characteristics and cancer-specific survival. Statistical Analysis Used: Cancer-specific survival was calculated using the Kaplan-Meier method. Results: Mean follow-up was 79 and 66 months, respectively, in the two groups. Tumor multiplicity was more frequent in group 2; otherwise, both groups were comparable in all characteristics. The definitive stage was T1 in all patients. Although the 3-year (84% in group 1 vs. 79% in group 2), 5-year (78% vs. 71%) and 10-year (69% vs. 64%) cancer-specific survival rates were lower in the deferred cystectomy group, the difference was not statistically significant. In group 2, survival was significantly lower in cases undergoing more than three transurethral resections of bladder tumors (TURBT) than in cases with fewer TURBTs. Conclusions: Cancer-specific survival is statistically comparable for primary and deferred cystectomy in T1 bladder cancer, although there is a non-significant difference in favor of primary cystectomy. In the deferred cystectomy group, the number of TURBTs beyond three is associated with lower survival. Conservative treatment should be adopted for most cases in this category

    Antisperm antibody testing: A comprehensive review of its role in the management of immunological male infertility and results of a global survey of clinical practices

    Get PDF
    Antisperm antibodies (ASA), as a cause of male infertility, have been detected in infertile males as early as 1954. Multiple causes of ASA production have been identified, and they are due to an abnormal exposure of mature germ cells to the immune system. ASA testing (with mixed anti-globulin reaction, and immunobead binding test) was described in the WHO manual 5th edition and is most recently listed among the extended semen tests in the WHO manual 6th edition. The relationship between ASA and infertility is somewhat complex. The presence of sperm agglutination, while insufficient to diagnose immunological infertility, may indicate the presence of ASA. However, ASA can also be present in the absence of any sperm agglutination. The andrological management of ASA depends on the etiology and individual practices of clinicians. In this article, we provide a comprehensive review of the causes of ASA production, its role in immunological male infertility, clinical indications of ASA testing, and the available therapeutic options. We also provide the details of laboratory procedures for assessment of ASA together with important measures for quality control. Additionally, laboratory and clinical scenarios are presented to guide the reader in the management of ASA and immunological male infertility. Furthermore, we report the results of a recent worldwide survey, conducted to gather information about clinical practices in the management of immunological male infertility

    Post-Vasectomy Semen Analysis: Optimizing Laboratory Procedures and Test Interpretation through a Clinical Audit and Global Survey of Practices

    No full text
    Purpose: The success of vasectomy is determined by the outcome of a post-vasectomy semen analysis (PVSA). This article describes a step-by-step procedure to perform PVSA accurately, report data from patients who underwent post vasectomy semen analysis between 2015 and 2021 experience, along with results from an international online survey on clinical practice. Materials and Methods: We present a detailed step-by-step protocol for performing and interpretating PVSA testing, along with recommendations for proficiency testing, competency assessment for performing PVSA, and clinical and laboratory scenarios. Moreover, we conducted an analysis of 1,114 PVSA performed at the Cleveland Clinic’s Andrology Laboratory and an online survey to understand clinician responses to the PVSA results in various countries. Results: Results from our clinical experience showed that 92.1% of patients passed PVSA, with 7.9% being further tested. A total of 78 experts from 19 countries participated in the survey, and the majority reported to use time from vasectomy rather than the number of ejaculations as criterion to request PVSA. A high percentage of responders reported permitting unprotected intercourse only if PVSA samples show azoospermia while, in the presence of few non-motile sperm, the majority of responders suggested using alternative contraception, followed by another PVSA. In the presence of motile sperm, the major-ity of participants asked for further PVSA testing. Repeat vasectomy was mainly recommended if motile sperm were observed after multiple PVSA’s. A large percentage reported to recommend a second PVSA due to the possibility of legal actions. Conclusions: Our results highlighted varying clinical practices around the globe, with controversy over the significance of non-motile sperm in the PVSA sample. Our data suggest that less stringent AUA guidelines would help improve test compli-ance. A large longitudinal multi-center study would clarify various doubts related to timing and interpretation of PVSA and would also help us to understand, and perhaps predict, recanalization and the potential for future failure of a vasectomy

    Global Practice Patterns in the Evaluation of Non-Obstructive Azoospermia: Results of a World-Wide Survey and Expert Recommendations

    No full text
    Purpose: Non-obstructive azoospermia (NOA) represents the persistent absence of sperm in ejaculate without obstruction, stemming from diverse disease processes. This survey explores global practices in NOA diagnosis, comparing them with guidelines and offering expert recommendations. Materials and methods: A 56-item questionnaire survey on NOA diagnosis and management was conducted globally from July to September 2022. This paper focuses on part 1, evaluating NOA diagnosis. Data from 367 participants across 49 countries were analyzed descriptively, with a Delphi process used for expert recommendations. Results: Of 336 eligible responses, most participants were experienced attending physicians (70.93%). To diagnose azoospermia definitively, 81.7% requested two semen samples. Commonly ordered hormone tests included serum follicle-stimulating hormone (FSH) (97.0%), total testosterone (92.9%), and luteinizing hormone (86.9%). Genetic testing was requested by 66.6%, with karyotype analysis (86.2%) and Y chromosome microdeletions (88.3%) prevalent. Diagnostic testicular biopsy, distinguishing obstructive azoospermia (OA) from NOA, was not performed by 45.1%, while 34.6% did it selectively. Differentiation relied on physical examination (76.1%), serum hormone profiles (69.6%), and semen tests (68.1%). Expectations of finding sperm surgically were higher in men with normal FSH, larger testes, and a history of sperm in ejaculate. Conclusions: This expert survey, encompassing 367 participants from 49 countries, unveils congruence with recommended guidelines in NOA diagnosis. However, noteworthy disparities in practices suggest a need for evidence-based, international consensus guidelines to standardize NOA evaluation, addressing existing gaps in professional recommendations

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    Purpose: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. Materials and Methods: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). Results: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were includ-ed in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I2=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I2=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I2=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I2=98.65%, Egger's p=0.0003; progressive sperm motil-ity: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I2=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I2=97.87%, Egger's p=0.1864. Conclusions: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    PURPOSE: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. MATERIALS AND METHODS: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). RESULTS: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p\u3c0.001; I²=83.62%, Egger\u27s p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p\u3c0.001; I²=97.86%, Egger\u27s p\u3c0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p\u3c0.001; I²=97.88%, Egger\u27s p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p\u3c0.001; I²=98.65%, Egger\u27s p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p\u3c0.001; I²=98.97%, Egger\u27s p\u3c0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p\u3c0.001; l2=97.98%, Egger\u27s p\u3c0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p\u3c0.001; I²=97.87%, Egger\u27s p=0.1864. CONCLUSIONS: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    International audiencePurpose: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles.Materials and methods: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies).Results: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I²=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I²=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I²=97.87%, Egger's p=0.1864.Conclusions: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    Global Practice Patterns and Variations in the Medical and Surgical Management of Non-Obstructive Azoospermia: Results of a World-Wide Survey, Guidelines and Expert Recommendations

    No full text
    Purpose: Non-obstructive azoospermia (NOA) is a common, but complex problem, with multiple therapeutic options and a lack of clear guidelines. Hence, there is considerable controversy and marked variation in the management of NOA. This survey evaluates contemporary global practices related to medical and surgical management for patients with NOA. Materials and methods: A 56-question online survey covering various aspects of the evaluation and management of NOA was sent to specialists around the globe. This paper analyzes the results of the second half of the survey dealing with the management of NOA. Results have been compared to current guidelines, and expert recommendations have been provided using a Delphi process. Results: Participants from 49 countries submitted 336 valid responses. Hormonal therapy for 3 to 6 months was suggested before surgical sperm retrieval (SSR) by 29.6% and 23.6% of participants for normogonadotropic hypogonadism and hypergonadotropic hypogonadism respectively. The SSR rate was reported as 50.0% by 26.0% to 50.0% of participants. Interestingly, 46.0% reported successful SSR in <10% of men with Klinefelter syndrome and 41.3% routinely recommended preimplantation genetic testing. Varicocele repair prior to SSR is recommended by 57.7%. Half of the respondents (57.4%) reported using ultrasound to identify the most vascularized areas in the testis for SSR. One-third proceed directly to microdissection testicular sperm extraction (mTESE) in every case of NOA while others use a staged approach. After a failed conventional TESE, 23.8% wait for 3 months, while 33.1% wait for 6 months before proceeding to mTESE. The cut-off of follicle-stimulating hormone for positive SSR was reported to be 12-19 IU/mL by 22.5% of participants and 20-40 IU/mL by 27.8%, while 31.8% reported no upper limit. Conclusions: This is the largest survey to date on the real-world medical and surgical management of NOA by reproductive experts. It demonstrates a diverse practice pattern and highlights the need for evidence-based international consensus guidelines
    corecore