598 research outputs found

    Non-adiabatic corrections to elastic scattering of halo nuclei

    Full text link
    We derive the formalism for the leading order corrections to the adiabatic approximation to the scattering of composite projectiles. Assuming a two-body projectile of core plus loosely-bound valence particle and a model (the core recoil model) in which the interaction of the valence particle and the target can be neglected, we derive the non-adiabatic correction terms both exactly, using a partial wave analysis, and using the eikonal approximation. Along with the expected energy dependence of the corrections, there is also a strong dependence on the valence-to-core mass ratio and on the strength of the imaginary potential for the core-target interaction, which relates to absorption of the core in its scattering by the target. The strength and diffuseness of the core-target potential also determine the size of the corrections. The first order non-adiabatic corrections were found to be smaller than qualitative estimates would expect. The large absorption associated with the core-target interaction in such halo nuclei as Be11 kills off most of the non-adiabatic corrections. We give an improved estimate for the range of validity of the adiabatic approximation when the valence-target interaction is neglected, which includes the effect of core absorption. Some consideration was given to the validity of the eikonal approximation in our calculations.Comment: 14 pages with 10 figures, REVTeX4, AMS-LaTeX v2.13, submitted to Phys. Rev.

    Effects of an induced three-body force in the incident channel of (d,p) reactions

    Get PDF
    A widely accepted practice for treating deuteron breakup in A(d,p)BA(d,p)B reactions relies on solving a three-body A+n+pA+n+p Schr\"odinger equation with pairwise AA-nn, AA-pp and nn-pp interactions. However, it was shown in [Phys. Rev. C \textbf{89}, 024605 (2014)] that projection of the many-body A+2A+2 wave function into the three-body A+n+pA+n+p channel results in a complicated three-body operator that cannot be reduced to a sum of pairwise potentials. It contains explicit contributions from terms that include interactions between the neutron and proton via excitation of the target AA. Such terms are normally neglected. We estimate the first order contribution of these induced three-body terms and show that applying the adiabatic approximation to solving the A+n+pA+n+p model results in a simple modification of the two-body nucleon optical potentials. We illustrate the role of these terms for the case of 40^{40}Ca(d,pd,p)41^{41}Ca transfer reactions at incident deuteron energies of 11.8, 20 and 56 MeV, using several parameterisations of nonlocal optical potentials.Comment: 7 pages, 2 figures. Publication due in Phys. Rev.

    Monte Carlo integration in Glauber model analysis of reactions of halo nuclei

    Full text link
    Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the most accurate wave functions and calculate the phase-shift functions without approximation. Examples of proton nucleus (e.g. p-6^6He, p-6^6Li) and nucleus-nucleus (e.g. 6^6He12-^{12}C) scatterings illustrate the effectiveness of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of halo nuclei.Comment: 20 pages, 8 figure

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Energy Dependence of Breakup Cross Sections of Halo Nucleus 8B and Effective Interactions

    Get PDF
    We study the energy dependence of the cross sections for nucleon removal of 8B projectiles. It is shown that the Glauber model calculations with nucleon-nucleon t-matrix reproduce well the energy dependence of the breakup cross sections of 8B. A DWBA model for the breakup cross section is also proposed and results are compared with those of the Glauber model. We show that to obtain an agreement between the DWBA calculations, the Glauber formalism, and the experimental data, it is necessary to modify the energy behavior of the effective interaction. In particular, the breakup potential has a quite different energy dependence than the strong absorption potential.Comment: 13 pages, 4 figure

    Aldosterone modulates the association between NCC and ENAC

    Get PDF
    Distal sodium transport is a final step in the regulation of blood pressure. As such, understanding how the two main sodium transport proteins, the thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC), are regulated is paramount. Both are expressed in the late distal nephron; however, no evidence has suggested that these two sodium transport proteins interact. Recently, we established that these two sodium transport proteins functionally interact in the second part of the distal nephron (DCT2). Given their co-localization within the DCT2, we hypothesized that NCC and ENaC interactions might be modulated by aldosterone (Aldo). Aldo treatment increased NCC and αENaC colocalization (electron microscopy) and interaction (coimmunoprecipitation). Finally, with co-expression of the Aldo-induced protein serum- and glucocorticoid-inducible kinase 1 (SGK1), NCC and αENaC interactions were increased. These data demonstrate that Aldo promotes increased interaction of NCC and ENaC, within the DCT2 revealing a novel method of regulation for distal sodium reabsorption

    Few-body multiple scattering calculations for 6 He on protons

    Get PDF
    The elastic scattering of the halo nucleus 6 He from a proton target at 717 MeV/nucleon is investigated within three different multiple-scattering formulations of the total transition amplitude. The factorized impulse approximation (FIA) and the fixed scatterer approximation (FSA) of the multiple-scattering expansion are used to evaluate accurately the single-scattering terms and to test the validity of a few-body Glauber approach. The latter also includes terms beyond single scattering and the importance of these terms is investigated. The differential cross section is calculated for proton scattering from 6 He at 717 MeV in inverse kinematics and compared with recent data.Fundacao para a Ciencia e a Tecnologia POCTI/FNU/43421/2001Acçao Integrada Luso-Espanhola E-75/0

    Probing the Structure of Halo Nuclei

    Get PDF
    Our understanding of halo nuclei has so far relied on high-energy scattering and reactions, but a number of uncertainties remain. I discuss in general terms the new range of observables which will be measured by experiments around the Coulomb barrier, and how some details of the reaction mechanisms still need to be clarified.Comment: Proceedings of FUSION97 conference (March 1997), South Durras, Australia. Submitted to J. Physics G: special issue `Heavy ion collisions at near barrier energies'. No figures; uses IOPConf.sty (included

    Alternative evaluations of halos in nuclei

    Get PDF
    Data for the scattering of 6He, 8He, 9Li, and 11Li from hydrogen are analyzed within a fully microscopic folding model of proton-nucleus scattering. Current data suggest that of these only 11Li has a noticeable halo. For 6He, we have also analysed the complementary reaction 6Li(gamma,pi)6He(gs). The available data for that reaction support the hypothesis that 6He may not be a halo nucleus. However, those data are scarce and there is clearly a need for more to elicit the microscopic structure of 6He.Comment: 18 pages, 8 figures (added 4 figures), added reference. Version accepted for publication in Phys. Rev.
    corecore