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Few-body multiple scattering calculations for 6He on protons
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The elastic scattering of the halo nucleus 6He from a proton target at 717 MeV/nucleon is investigated
within three different multiple-scattering formulations of the total transition amplitude. The factorized impulse
approximation (FIA) and the fixed scatterer approximation (FSA) of the multiple-scattering expansion are used to
evaluate accurately the single-scattering terms and to test the validity of a few-body Glauber approach. The latter
also includes terms beyond single scattering and the importance of these terms is investigated. The differential
cross section is calculated for proton scattering from 6He at 717 MeV in inverse kinematics and compared with
recent data.
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I. INTRODUCTION

To understand fully the scattering of composite nuclei,
consisting of A nucleons, from a structureless target such as a
single proton, one ideally needs to solve the A + 1 scattering
problem. Fortunately, for many nuclei, and halo nuclei in
particular, this may not be necessary because such systems
can be very well-described within a few-body picture of n

constituents (where n < A). The strongly correlated n bodies
can be individual nucleons or clusters of nucleons where each
cluster is itself treated as a structureless, though not necessarily
inert, body. Thus the scattering problem to be solved is a
more manageable but nevertheless challenging (n + 1)-body
one.

The ground-state wave function for the bound n-body
system (where here n is typically 2, for the deuteron or 11Be, or
3 for the Borromean nuclei 6He and 11Li) can be described via
approximate solutions to the time-independent Schrödinger
equation. This is then used as one of the ingredients, along with
the optical potentials between each of the n constituents and
the target, entering the fully (n + 1)-body scattering problem.

It is the aim of microscopic scattering theory to construct the
total scattering amplitude in terms of well-defined dynamical
and structural quantities. The many-body scattering frame-
work is, however, a nontrivial one to deal with. Therefore,
approximation schemes have been developed such as the
continuum discretized coupled-channels (CDCC) method [1].
In this approach the (N + 1)-body Schrödinger equation is
approximated as a set of effective two-body coupled-channel
equations, which take into account bound as well as continuum
states (something found to be of great importance when dealing
with the scattering of weakly bound systems). However, this
method is nontrivial to implement numerically and for the
high scattering energies available at today’s fragmentation

*Electronic address: j.al-khalili@surrey.ac.uk
†Electronic address: raquel.crespo@tagus.ist.utl.pt
‡Electronic address: moro@us.es

facilities it becomes more practical to use a multiple-scattering
expansion of the total transition amplitude (MST) [2–8].

In the MST approach the projectile-target transition ampli-
tude is expanded in terms of off-shell transition amplitudes
for projectile constituent-target subsystem scattering. Due to
the complexity of the many-body operator suitable approxima-
tions need to be made to express in a convenient way the overall
scattering amplitude in terms of these subsystem amplitudes.
The MST approach therefore provides a clear and transparent
interpretation of the composite system in terms of the free
scattering of its constituents and is numerically advantageous.
At the high energies and weak binding of the projectiles of
interest here the expansion is expected to converge rapidly.

In this article, we use this framework to calculate the elastic
scattering of the halo nucleus 6He from a proton target at
717 MeV/nucleon where new experimental data are now
available. However, the momentum transfers covered by the
data still essentially probe only the part of the few-body
dynamics of the halo system that is constrained by the rms
matter radius. Thus a treatment of 6He as a three-body
system of α-particle core plus two valence neutrons is quite
appropriate. We outline and compare three quite different ap-
proaches to evaluating the MST multiple-scattering expansion
to show the validity of the different models and the importance
of higher-order terms in the MST series. Specifically, we
examine (i) the factorized impulse approximation (FIA);
(ii) the fixed scatterer, or adiabatic, approximation (FSA);
and (iii) the Glauber approximation [9,10]. The first two
methods (described in detail in Ref. [8]), although making
fewer simplifying assumptions than the Glauber model, are
used here only to calculate the single-scattering terms of
the full amplitude, whereas the Glauber approach includes
higher-order terms. However, higher-order terms have been
used elsewhere [5]. We first compare all three approaches at
the single-scattering level and then include the higher order
terms within the Glauber framework and compare with the
experimental data. In all cases we use the same three-body
6He ground-state wave function and similar amplitudes for the
α − p and n − p subsystem scattering.
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II. THE MULTIPLE-SCATTERING EXPANSION OF THE
TOTAL TRANSITION AMPLITUDE

We consider the scattering of a projectile (labeled p) from
a few-body target consisting of n subsystems weakly bound
to each other (an n + 1 scattering problem). We refer to the
composite system as the target although in practice many such
scattering problems are carried out in inverse kinematics due
to the short lifetime of the n-cluster system, requiring it in
practice to be used as the projectile (such as the case of 6He + p

scattering investigated in Sec. VI). The n constituents of the
target can themselves be either individual nucleons or clusters
of nucleons. The total transition operator for the scattering is

T = V + V G0T =
n∑

i=1

vi +
n∑

i=1

viG0T , (1)

where vi is the interaction between the projectile and the ith
constituent of the target and G0 is the free Green’s operator
(propagator) in the sense that it does not contain the projectile-
target interactions

G0 = (E + iε − Kp − H0)−1, (2)

where E is the total energy in the center-of-mass (c.m.)
frame, Kp is the operator for the total kinetic energy of
the projectile and target in the overall c.m. system, and H0

the internal Hamiltonian of the n-body target. Within the
multiple-scattering expansion of the total transition operator,
one defines a projectile-ith constituent transition operator
τi as

τi = vi + viG0τi, (3)

where it is noted here that τi is not a two-body operator as it
depends on the propagator G0, which is a many-body operator.
Equation (1) can then be written

T =
n∑

i=1

Ti, (4)

where Ti satisfies

Ti = τi + τiG0

∑
j �=i

Tj = τi + τiG0

∑
j �=i

τj + · · · , (5)

and thus

T =
∑

i

τi +
∑

i

τiG0

∑
j �=i

τj + · · · . (6)

In the limit when the target nucleus subsystems are weakly
bound to each other, the multiple-scattering expansion to the
P-T transition amplitude is expected to converge rapidly [3,4]
and the multiple-scattering expansion Eq. (6) is useful. Often,
the series in Eq. (6) is truncated and only the first term is
retained, amounting to what is known as the single-scattering
approximation, in which the projectile can scatter from each
target constituent separately (to all orders in their interaction)
but does not then proceed to scatter from any of the other
constituents. Here, we retain higher-order terms in Eq. (6)
but, instead, make a less drastic simplifying assumption:
we retain only forward-scattering (FS) terms in the series.
That is, once the projectile has scattered from constituent

i and moves on to constituent j it does not then return to
constituent i because this would involve backscattering. With
this assumption therefore—assumed valid at higher scattering
energies—we see that Eq. (6) truncates naturally at the nth
order. Thus for a two-body target (n = 2), for instance, we
would have

T(n=2) = τ1 + τ2 + τ1G0τ2 + τ2G0τ1, (7)

and for a three-body target (n = 3) we would have

T(n=3) =
3∑

i=1

τi +
3∑

i=1

τiG0

3∑
j �=i

τj

+
3∑

i=1

τiG0

3∑
j �=i

τjG0

3∑
k �=i �=j

τk. (8)

We define �k, (�k′) as the initial (final) momentum of the
projectile in the projectile-target c.m. system and �q = �k′ − �k
as the projectile momentum transfer. Note that we denote wave
vectors with lowercase �k, whereas capital K denotes kinetic
energy operators. The elastic scattering amplitude is written

F(n)(q) = −µ

2πh̄2 〈�k′�(n)|T(n)|�k�(n)〉, (9)

where �(n) is the n-body intrinsic wave function of the target
and µ is the projectile-target reduced mass. Note that at
this stage we use the nonrelativistic expression in the above
equation. The appropriate relativistic kinematics factor can be
introduced following Refs. [2,7,8]. Substituting for T(n=2) from
Eq. (7) we have a sum of four scattering amplitudes, the two
single-scattering ones and the two double scattering ones,

F(n=2)(q) = F1(q) + F2(q) + F12(q) + F21(q). (10)

Similarly, for the case of a three-body target

F(n=3)(q) =
3∑

i=1

Fi(q) +
3∑

i=1

3∑
j �=i

Fij (q)

+
3∑

i=1

3∑
j �=i

3∑
k �=i �=j

Fijk(q). (11)

III. GLAUBER MULTIPLE SCATTERING

According to Glauber’s multiple-scattering theory the elas-
tic amplitude for the scattering of a proton from a composite
nucleus of mass A can be written as an integral over the proton
impact parameter plane as [9,10]

F GL
(n) (q) = ik

2π

∫
d2 �b ei �q·�b [1 − S(b)]. (12)

The elastic S matrix, as a function of the proton-target c.m.
impact parameter b, is

S(b) = 〈�(n)|
n∏

j=1

Spj (bj )|�(n)〉, (13)

where the label j runs over each cluster in the composite
target, with ground-state wave function �(n). In the original
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formulation by Glauber [11], this summation will of course
run over all A nucleons in the target. The S matrices, Spj (bj ),
describe the free scattering of the proton from each target
constituent.

The Glauber model contains essentially two different
approximations. As a first step, the adiabatic (or sudden)
approximation is made [12] in which the internal degrees of
freedom of the target (or projectile in the case of inverse kine-
matics) nucleus are frozen for the duration of the interaction
time. The second approximation is the eikonal, or straight-line,
assumption.

It must be stressed that the composite nucleus S matrix,
S(b) in Eq. (13), is a many-body matrix element of the target
ground-state n-body density |�(n)|2 and, without considerable
additional approximation,S(b) has no simple relationship with
the composite nucleus one-body density ρA(r).

To make a connection with multiple-scattering terms of
the last section and to test the importance of terms in
Eq. (6) beyond single scattering we consider the case of proton
scattering from an n = 3 cluster target nucleus composed of a
core and two valence nucleons as, for example, 6He. (Note that
the choice of the proton or the 6He as the projectile does not
alter the formulation of the scattering amplitude because we
are working in the c.m. frame.) Thus the three-body S matrix
of Eq. (13) becomes

S(b) = 〈�(n)|Sc(bc)S1(b1)S2(b2)|�(n)〉, (14)

where the constituent impact parameters, bc, b1 and b2, are
shown in Fig. 1 and depend on the c.m. impact parameter b and
the projections of the target internal coordinates on the impact
parameter plane weighted by the masses of the constituents
relative to the whole projectile. We can write

1 − S(b) = 〈�(n)|1 − Sc(bc)S1(b1)S2(b2)|�(n)〉
= 〈�(n)|[(1 − Sc) + (1 − S1) + (1 − S2)

− (1 − Sc)(1 − S1) − (1 − Sc)(1 − S2)

− (1 − S1)(1 − S2) + (1 − Sc)(1 − S1)

× (1 − S2)]|�(n)〉. (15)

Substituting the above expansion into the expression for the
Glauber scattering amplitude of Eq. (12) we see that the terms
correspond to just those retained in the forward-scattering

2b

1

bc

c ρ r

p

2 b

FIG. 1. Schematic representation of the collision of a proton on
a three-cluster nucleus showing the various impact parameters.

approximation defined in Eq. (11). This is a natural conse-
quence of the Glauber approximation involving the additivity
of eikonal phases arising from its own forward-scattering
assumption. Thus, the Glauber model provides us with a
logical justification for our forward-scattering assumption of
the previous section, provided of course that the scattering
energy is high enough for those assumptions required the
Glauber model to hold. The first three terms in the above
expansion correspond to the single-scattering terms in Eq. (11).
The above expansion also gives us a convenient way of testing
the relative importance of single scattering and higher-order
scattering terms when comparing with more precise multiple-
scattering formulations in the next section. Note that in the
multiple-scattering terms the few-body dynamics are properly
taken into account because the S matrices are functions of
both the c.m. impact parameter and the projections of the
internal coordinates of the composite nucleus onto the impact
parameter plane.

Note that even the single-scattering terms include effects
of breakup of the composite nucleus. To reproduce the
observables calculated in the single-scattering approximation
within a coupled-channel framework one needs to include
breakup channels.

IV. THE MST FACTORIZED IMPULSE APPROXIMATION

Within the impulse approximation (IA), the interaction
between the clusters Vij is assumed to have a negligible
dynamical effect on the scattering of the projectile from the
individual target subsystems and therefore can be neglected.
The operator projectile-i target subsystem transition amplitude
τi is then replaced by

t̂i = vi + viĜ0 t̂i , (16)

where Ĝ0 contains only the total kinetic energy operator K

Ĝ0 = (E+ − K)−1. (17)

The transition amplitude t̂i is still a many-body operator,
because the kinetic energy operator K has contributions from
the projectile and all n target subsystems. In the approach
followed by Crespo and Johnson [5] the initial relative
momenta between the clusters are neglected in the transition
matrix elements. One then obtains an FIA expression of a
product of a transition operator and a target form factor

T FIA
(n=3) = 〈 �Q ′

1|t̂1(ω1)| �Q1〉ρ12,3

(
m2

M12
�q,

m3

M123
�q
)

+〈 �Q ′
2|t̂2(ω2)| �Q2〉ρ12,3

(
m1

M12
�q,

m3

M123
�q
)

+〈 �Q ′
3ϕ3|t̂3(ω3)|ϕ3 �Q3〉ρ12,3

(
0,

M12

M123
�q
)

+ (· · ·),
(18)

where, within the single-scattering approximation, only the
first three terms are taken into account. In here, M12 =
m1 + m2,M123 = m1 + m2 + m3, ϕ3 is the core internal wave
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function and ρ12,3(�q1, �q2) is the target form factor

ρ12,3(�q1, �q2) =
∫

d �Q1d �Q2 φ
(n=3)∗
12,3 ( �Q1 + �q1, �Q2 + �q2)

×φ
(n=3)
12,3 ( �Q1, �Q2), (19)

where φ
(n=3)
12,3 ( �Q1, �Q2) is the Fourier transform of the wave

function of the two-body valence system relative to the core
φ

(n=3)
12,3 (�r, �R).

Within this approach, the relative momenta �Qi for the
projectile scattering of each subsystem i are [8]

�Qi = µi

µ
�k, �Q ′

i = �Qi + �q, (20)

with µi = mpmi/(mp + mi) the projectile-subsystem i re-
duced mass. In Eq. (18), the appropriate energy parameter
ωi is

ωi = µi

µ
E. (21)

By construction, from Eqs. (20) and (21) the matrix elements
of the transition amplitudes are on-shell. For projectile-target
scattering the scattering amplitude is related to the transition
amplitude according to Eq. (9). Equivalently, for projectile-
subsystem i scattering

|fi(ωi)|2 = − µi

2πh̄2 |t̂i(ωi)|2. (22)

It follows then that [8]

F FIA(E) = N 1/2
1 f̂1(ω1, �q)ρ12,3

(
m2

M12
�q,

m3

M123
�q
)

+N 1/2
2 f̂2(ω2, �q)ρ12,3

(
m1

M12
�q,

m3

M123
�q
)

+N 1/2
3 f̂3(ω3, �q)ρ12,3

(
0,

m3

M123
�q
)

, (23)

where the normalization factors are given by

Ni =
[

1

dωi/dE

]2

. (24)

Equations (22)–(24) can be easily generalized to include
relativistic kinematics following Refs. [2,7,8].

V. THE FIXED SCATTERER OR ADIABATIC
APPROXIMATION (FSA)

Within the fixed scatterer or adiabatic approximation,
the internal Hamiltonian between the clusters is taken to a
constant H̄ , that is, the projectile-i target subsystem transition
amplitude τi operator is replaced by

t̃i = vi + viG̃0 t̃i , (25)

where G̃0

G̃0 = (E+ − Kp − H̄ )−1. (26)

Within the FSA framework the total transition amplitude takes
the form [8]

T FSA
(n=3) = 〈�k ′|t̃1(E)|�k〉ρ12,3

(
m2

M12
�q,

m3

M123
�q
)

+〈�k ′|t̃2(E)|�k〉ρ12,3

(
m1

M12
�q,

m3

M123
�q
)

+〈�k ′ϕ3|t̃3(E)|ϕ3�k〉ρ12,3

(
0,

M12

M123
�q
)

. (27)

We note that in the FSA approach, the energy parameter is E =
h̄k2/2µ and, thus, a distinctive feature of the FSA is that the
two-body amplitudes are calculated with the projectile-target
reduced-mass µ instead of the projectile-fragment reduced-
mass µi . The scattering amplitudes are related to the transition
amplitude

|f̃i(E)|2 = − µ

2πh̄2 |t̃i(E)|2, (28)

and at high energies one has

f̃i(E) ∼ k

ki

f̂i(ωi), (29)

an exact relation if the eikonal approximation is used.
Notice that the Glauber multiple-scattering approach also
makes use of the adiabatic approximation [10], and in this
sense, it is closely related to the FSA rather than the FIA
approximation.

VI. CALCULATIONS AND RESULTS

To calculate the elastic scattering cross sections for protons
on weakly bound nuclei such as the Borromean halo 6He within
our models, we require as input the ground-state (three-body)
wave function of relative motion. We therefore use a realistic
(Faddeev) three-body wave function that gives the correct two-
neutron separation energy and root-mean-square (rms) matter
radii for 6He. The wave function, when used within a few-
body Glauber calculation, leads to total reaction cross sections
that agree with experiment. The other inputs to our models
are the on-shell matrix elements of the free elastic scattering
amplitudes for the constituents from the proton target (n + p

and α + p) evaluated at the appropriate energy and momentum
transfer. Note also that all cross sections presented here were
calculated using relativistic kinematics.

For the 6He ground state, we use the FC model wave
function that corresponds to a radius of 2.5 fm and that is
described in Ref. [13]. We use the same two-body scattering
amplitude for the α + p subsystem in the following way. We
first compute the elastic α + p “Glauber” S matrix according
to the prescription of Ref. [10], which is then used in
Eq. (12) to obtain the Glauber scattering amplitude. For the
FIA and FSA calculations, and to retain the same inputs, we
take the α + p Glauber S matrix and associate this continuous
function of impact parameter with partial-wave S matrix
elements at particular 
 values using the semiclassical relation
bk = 
 + 1/2 [9,14]. The transition amplitude is then built
from the sum of partial wave amplitudes.
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FIG. 2. Calculated and experimental p+4He elastic differential
cross-section angular distribution as a function of the square of the
four-momentum transfer (q2 = −t) at 699 MeV/nucleon. The data
are from Refs. [16] (solid points) and [17] (open points).

Figure 2 shows the calculated elastic differential cross
section at 699 MeV as a function of the square of the
four-momentum transfer (q2 = −t). It was found that very
similar cross sections were obtained whether we used the
Glauber S matrix directly in Eq. (12) or carried out a
partial-wave sum of discrete partial S-matrix elements, S
.
Therefore only one theoretical cross section is shown. Because
the free NN -scattering parameters are taken from Ref. [15],
without adjustment, and a simple microscopic α-particle wave
function has been used, the only free parameter available was
the assumed rms size of the α particle, through r0. The level
of agreement with the data for the physical rms matter radius
of 1.49 fm is therefore very encouraging. No attempt was
made to fine-tune the NN interaction parameters. In any case
the experimental data also have a stated overall normalization
uncertainty of order ±2% [16,17].

In the FIA and FSA calculations, the pn on-shell scat-
tering amplitudes were obtained from a realistic NN Paris
interaction, as in Ref. [5]. In the Glauber calculations, each
pairwise NN -scattering operator (S matrix), such as the pnS

matrices in Eq. (14), denoted by S1 and S2, is denoted by
Spj (bj ) = 1 − �pj (bj ), where bj is the impact parameter of
the incident proton relative to target nucleon j . The j label on
�pj also identifies the use of the pn or pp profile function,
the two-dimensional transform of the free NN -scattering
amplitudes

�pj (bj ) = 1

2πik

∫
d2 �qe−i �q·�bj fpj (q). (30)

These profile functions are parametrized, as is usual, according
to

�pj (b) = σpj

4iπβpj

(αpj + i) exp(−b2/2βpj ) , (j = p, n),

(31)

where σpp and σpn are the pp and pn total cross sections.
The αpj are the ratios of the real to imaginary parts of the

0.02 0.04 0.06 0.08 0.10 0.12 0.14

-t  ((GeV/c)
2
)

10
0
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10
2

10
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10
4

dσ
/d

t  
 (

m
b/

(G
eV

/c
)2 )

FIA

FSA

Glauber single scatt.

Experimental data

6
He+p       717 MeV/nucleon

single scattering

FIG. 3. Experimental and calculated p+6He elastic scattering
at 717 MeV using the FIA (dashed), the FSA (adiabatic) approxi-
mation (dotted), and Glauber (solid line). The data are taken from
Refs. [19–21].

forward-scattering NN amplitudes and the βpj are the range
parameters. All parameters are deduced, e.g., Refs. [10,15,18],
from fits to free pp- and pn-scattering data. In Fig. 3 we
compare the calculated p+6He cross section using the FIA
(dashed), the FSA (adiabatic) approximation (dotted), and
Glauber (solid line) as a function of the squared momentum
transfer. In all the three cases, only the single-scattering
contribution has been taken into account. The calculated
differential cross sections using FIA and FSA are very similar,
which might indicate that the same physics is retained in
both the factorization and the adiabatic approximations. The
calculated cross section using Glauber single scattering, which
also makes use of the adiabatic assumption, is in very close
agreement with the other two curves, underlining that the
semiclassical approximation used by the Glauber scattering
framework is valid at this energy.

In Fig. 4 the dashed line represents the calculated differen-
tial elastic cross section for p+6He using the single-scattering
contribution to the Glauber amplitude and is obtained from
the first three terms in Eq. (15). The effect of including the
higher-order scattering terms within the Glauber scattering
framework defined in Eq. (15) is shown by the solid line.

Both calculations reproduce very well the data up to
0.05(GeV/c)2. However, at higher-momentum transfers the
single-scattering cross section significantly overestimates the
data, whereas the cross section including all higher-order
contributions approaches the data. One then concludes that
dynamical higher-order contributions are very significant at
this high-momentum transfer and need to be included. This is
particularly true when extracting rms radii from the elastic-
scattering data. The full Glauber model cross section still
slightly overestimates the data, however. We note that our few-
body Glauber calculation has been compared [10] with one
making making an optical limit (OL) Glauber approximation,
which neglects few-body scattering effects. Although the
difference between the cross sections calculated within the two
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FIG. 4. Calculated p-6He elastic scattering at 700 MeV using
Glauber single scattering (dashed) and Glauber, including all orders
(solid line). The data are taken from Refs. [19–21].

scattering frameworks is small at low-momentum transfers,
they gradually deviate from the OL cross section, doing less
well.

Because we have tighter control over the assumptions
and approximations made in our scattering models, we feel
confident that the remaining discrepancies between the full
Glauber model and the data, although possibly due to short-
range correlation effects important at the higher-momentum
transfers and not treated here, could arise from the inputs
to our models. And because the free scattering of the α

core reproduces α + p scattering very well, although the full
cross sections have little sensitivity to the exact form of the
pnS matrices at the larger-momentum transfers [8], we can
conclude that the remaining differences between theory and
experiment are likely to be due to the inadequacy of the 6He
wave function. Nevertheless, the breakdown of the forward
approximation used by the Glauber scattering framework
cannot be ruled out and should be investigated due to the

implications on the accurate extraction of the rms radii from
the elastic-scattering data.

VII. CONCLUSIONS

We have studied p−6He elastic scattering at 717 MeV
using the multiple-scattering expansion of the total tran-
sition amplitude by treating 6He as a three-body system,
hence having to solve a four-body scattering problem. We
have discussed three different approaches. In the Glauber
multiple-scattering model we make use of both the adiabatic
and forward-scattering approximations. Although both these
assumptions are expected to work well at such scattering
energies, it is important, when comparing with experimental
data, to delineate the different types of missing physics: those
not treated in the scattering process or reaction mechanism
and those coming from the nuclear structure (in this case of
the 6He).

We have, therefore, shown comparisons, at the level of
the elastic differential cross section, between the Glauber
approach and two other multiple-scattering methods: the
factorized impulse approximation and the fixed scatterer
approximation. We take only the single-scattering terms in
this comparison and show that the Glauber model works
remarkably well.

We have also shown that higher-order dynamical contribu-
tions are important in describing the data at high-momentum
transfers (q2〉0.05[GeV/c)2]. Moreover, the calculated cross
section using Glauber to all orders still slightly overestimate
the data and may indicate inadequacy of the structure model
used to describe 6He or the breakdown of the Glauber
scattering framework.
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2002.
[20] F. Aksouh et al., Review of the University of Milano, Ricerca

Scientifica educacione permanente, Suppl 122 (2003).
[21] P. Egelhof, Nucl. Phys. A722, C254 (2002).

024608-6


