11 research outputs found

    The Effects of Salt Concentration on the Rejection of Pharmaceutically Active Compounds by Nanofiltration Membranes

    Get PDF
    While traces of pharmaceuticals have been found in the environment, the pharmaceutical industry produces waste streams high in pharmaceutically active compounds concentration along with other components such as salts. This work investigated the removal of three common pharmaceuticals, carbamazepine, ibuprofen, and diclofenac, at concentrations found in the pharmaceutical industry, under different monovalent salt concentrations of sodium chloride using a commercially available nanofiltration membrane. The influence of a monovalent salt concentration and temperature on the removal were determined. Pharmaceutical rejection was found to be dependent on the compounds’ molecular weights, charge, and hydrophobicity. Diclofenac and ibuprofen rejections were found to be high (90-99%) and (85-96%) respectively, and the rejection increased with increasing salt concentration. Meanwhile, moderate retention values were found for the neutral carbamazepine (65-77%) and these values decreased with increasing salt concentration, and also decreased with increasing temperatures. A threshold salt concentration was found at which these effects were buffered or even reversed

    Isolation and molecular characterization of cry gene for Bacillus thuringiensis isolated from soil of gaza strip

    Get PDF
    Bacillus thuringiensis, insecticide, polymerase chain reactions (PCR), crystalline protein, Cry gene, Gaza strip. Bacillus thuringiensis (Bt) is a rod-shaped, gram-positive, facultative anaerobic, and spore-forming bacterium (Konecka et al., 2007). During sporulation, it produces insecticidal proteins, which are deposited within the sporangium as crystalline aggregates (Crickomre et al., 1998

    Nitric Oxide-Releasing NO–Curcumin Hybrid Inhibits Colon Cancer Cell Proliferation and Induces Cell Death In Vitro

    No full text
    Cancer is a leading cause of death worldwide, and most of the currently available drugs for cancer treatment have limited potential. Natural products and their relatives continue to represent a very high percentage of the drugs used for cancer treatment. Curcumin is one of several natural drugs that has recently attracted much attention due to its putative cancer-preventive and anticancer properties. As well, Nitric Oxide (NO) holds a great potential for NO-based treatments for a wide variety of diseases. Here, for the first time, we tested the anti-cancer activities of an NO–Curcumin hybrid, hypothesizing that by joining the effects of curcumin and NO in one compound, the hybrid compound would be more potent than curcumin alone in treating colon cancer. To compare the anti-cancer activities of curcumin and NO–curcumin, we treated different colon cancer cell lines with either curcumin or NO–curcumin and tested their effects on cell proliferation and death. Our results show that NO–curcumin is more effective in reducing cell proliferation and increasing cell death when compared to curcumin. In addition, NO–curcumin has a lower IC50 compared to curcumin. Altogether, our results demonstrate for the first time that an NO–curcumin hybrid has more potent anti-cancer activity compared to curcumin alone, making it a potential future treatment for cancer and perhaps other diseases

    Multisource Groundwater Contamination under Data Scarcity: The Case Study of Six Municipalities in the Proximity of the Naameh Landfill, Lebanon

    No full text
    Lebanon is affected by a protracted environmental and solid waste crisis that is threatening the water resources and the public health of its communities. This study is part of a public participatory research project that aims to evaluate the impacts of solid waste disposal practices on water, air, and health in six villages of Lebanon, stigmatized by the presence of a regional landfill. Community mapping enabled the selection and testing of seven springs and three wells in the upstream basin and 11 wells in the lower basin, covering a broad list of chemical, physical, and bacteriological parameters. Two water quality indices (WQ-1 and WQ-2) were used to assess water quality in the study area. The results for the upstream wells and springs showed a significant bacteriological contamination, while the results in the lower wells showed high levels of conductivity, chlorides, and zinc along with the occurrence of organic micropollutants in trace concentrations. The comparison between the experimental data, with the natural background value established in the same area, did not show major differences, except for zinc and bacteriological indicators. The bacteriological contamination is most likely related to sewage infiltration into groundwater at the time of the assessment. Zinc may result from landfill leachate infiltration but also well corrosion. Saltwater intrusion affecting the coastal basin is masking the results for conductivity, chlorides, and sulfates, whereas the presence of small traces of organic micropollutants in the coastal aquifer may be related to leachate infiltration. WQI-1 results, which included bacteriological indicators, showed highly degraded water quality in the C1-C3 inner basin. In contrast, WQI-2, which includes physio-chemical indicators only, showed good water quality, slightly deteriorating in the coastal area, downstream of the Naameh landfill
    corecore