17 research outputs found

    Exploring patient and family involvement in the lifecycle of an orphan drug: a scoping review

    Get PDF
    Published online: 22 December 2017Background: Patients and their families have become more active in healthcare systems and research. The value of patient involvement is particularly relevant in the area of rare diseases, where patients face delayed diagnoses and limited access to effective therapies due to the high level of uncertainty in market approval and reimbursement decisions. It has been suggested that patient involvement may help to reduce some of these uncertainties. This review explored existing and proposed roles for patients, families, and patient organizations at each stage of the lifecycle of therapies for rare diseases (i.e., orphan drug lifecycle). Methods: A scoping review was conducted using methods outlined by Arksey and O’Malley. To validate the findings from the literature and identify any additional opportunities that were missed, a consultative webinar was conducted with members of the Patient and Caregiver Liaison Group of a Canadian research network. Results: Existing and proposed opportunities for involving patients, families, and patient organizations were reported throughout the orphan drug lifecycle and fell into 12 themes: research outside of clinical trials; clinical trials; patient reported outcomes measures; patient registries and biorepositories; education; advocacy and awareness; conferences and workshops; patient care and support; patient organization development; regulatory decision-making; and reimbursement decision-making. Existing opportunities were not described in sufficient detail to allow for the level of involvement to be assessed. Additionally, no information on the impact of involvement within specific opportunities was found. Based on feedback from patients and families, documentation of existing opportunities within Canada is poor. Conclusions: Opportunities for patient, family, and patient organization involvement exist throughout the orphan drug lifecycle. However, based on the information found, it is not possible to determine which opportunities would be most effective at each stage.Andrea Young, Devidas Menon, Jackie Street, Walla Al-Hertani and Tania Stafinsk

    Engagement of Canadian patients with rare diseases and their families in the lifecycle of therapy: a qualitative study

    Get PDF
    Patient involvement is increasingly recognized as critical to the development, introduction and use (i.e. the lifecycle) of new and effective therapies, particularly those for rare diseases, where natural histories and the impact on patients and families are less well-understood than for common diseases. However, little is known about how patients and families would like to be involved during the lifecycle.The aim of this study was to explore ways in which Canadian patients with rare diseases and their families would like to be involved in the lifecycle of therapies and identify their priorities for involvement.Patients with rare diseases and their families were recruited to participate in two deliberative sessions, during which concepts related to decision-making uncertainty and the technology lifecycle were introduced before eliciting input around ways in which they could be involved. This was followed by a webinar, which was used to further identify opportunities for involvement. The data were then analyzed qualitatively using eclectic coding.Patients and families identified opportunities that fell into three goals: (1) incorporation of their 'lived experience' in coverage decision making (i.e. decisions by governments on funding new therapies); (2) improved care for patients; and (3) greater awareness of rare diseases, with the first being a priority.Opportunities for patients and families to contribute their 'lived experience' are needed throughout the orphan drug lifecycle, but the ideal mechanisms for providing this input have yet to be determined.Andrea Young, Devidas Menon, Jackie Street, Walla Al_Hertani, Tania Stafinsk

    Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Get PDF
    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival

    Role of MyD88 in Diminished Tumor Necrosis Factor Alpha Production by Newborn Mononuclear Cells in Response to Lipopolysaccharide

    No full text
    Human newborns are more susceptible than adults to infection by gram-negative bacteria. We hypothesized that this susceptibility may be associated with a decreased response by leukocytes to lipopolysaccharide (LPS). In this study, we compared LPS-induced secretion of tumor necrosis factor alpha (TNF-α) by mononuclear cells (MNC) from adult peripheral blood and newborn umbilical cord blood in vitro and attempted to determine the mechanisms involved in its regulation. At a high concentration of LPS (10 ng/ml) and in the presence of autologous plasma, MNC from adults and newborns secreted similar amounts of TNF-α. However, in the absence of plasma, MNC from newborns secreted significantly less TNF-α compared to MNC from adults. Moreover, at a low concentration of LPS (0.1 ng/ml) and in the presence of plasma, TNF-α secretion was significantly lower for newborn MNC compared to adult MNC. Adults and newborns had similar numbers of CD14 and Toll-like receptor 4 (TLR-4)-positive cells as measured by flow cytometry. However, the intensity of the CD14 marker was greater for adult than for newborn cells. Incubation of cells with LPS led to an increase in CD14 and TLR-4 intensity for adult cells but not for newborn cells. The effect of LPS stimulation of adult or newborn cells was similar for ERK, p38, and IκBα phosphorylation, as well as IκBα degradation. Finally, we assessed levels of the TLR-4 adapter protein, the myeloid differentiation antigen 88 (MyD88). We found a direct relation between adult and newborn TNF-α secretion and MyD88, which was significantly decreased in newborn monocytes. Since TLR-4 signals intracellularly through the adapter protein, MyD88, we hypothesize that MyD88-dependent factors are responsible for delayed and decreased TNF-α secretion in newborn monocytes

    Twenty-year results of the cementless Corail stem

    No full text
    The concept of an extensive hydroxyapatite (HA) coating for the fixation of a tapered femoral stem (Corail®) was introduced 25 years ago in the hope that we could achieve durable biological fixation while preserving normal periprosthetic bone activity. The value of uncemented fixation using HA-coated implants is now widely admitted. However, the characteristics of implant coating and more specifically its extent still remain a subject of debate or even controversy. This prospective study conducted over a 20-year period has greatly contributed to demonstrating the reliability of the Corail® prosthesis, in terms of functional abilities, radiographic evidence and global survivorship. A full HA coating applied on a straight and proximally flared stem induces substantial short-, mid- and long-term benefits without any deleterious effects reported. Modifications of the bone pattern have been strictly limited: slight resorption at the calcar level, absence of cortical hypertrophy and alleged stress shielding. The radiological “silence” is one of the paramount facts clearly demonstrated

    Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation

    No full text
    It has been postulated that mucus stasis is central to the pathogenesis of obstructive lung diseases. In Scnn1b-transgenic (Scnn1b-Tg(+)) mice, airway-targeted overexpression of the epithelial Na(+) channel β subunit causes airway surface dehydration, which results in mucus stasis and inflammation. Bronchoalveolar lavage from neonatal Scnn1b-Tg(+) mice, but not wild-type littermates, contained increased mucus, bacteria, and neutrophils, which declined with age. Scnn1b-Tg(+) mice lung bacterial flora included environmental and oropharyngeal species, suggesting inhalation and/or aspiration as routes of entry. Genetic deletion of the Toll/Interleukin-1 receptor adapter molecule MyD88 in Scnn1b-Tg(+) mice did not modify airway mucus obstruction, but caused defective neutrophil recruitment and increased bacterial infection, which persisted into adulthood. Scnn1b-Tg(+) mice derived into germ-free conditions exhibited mucus obstruction similar to conventional Scnn1b-Tg(+) mice and sterile inflammation. Collectively, these data suggest that dehydration-induced mucus stasis promotes infection, compounds defects in other immune mechanisms, and alone is sufficient to trigger airway inflammation
    corecore