39 research outputs found

    Multiband slot-loaded dipole antenna for WLAN and LTE-A applications

    Get PDF
    A multiband printed dipole antenna for wireless local area network (WLAN) and long-term evolution-advanced (LTEA) applications is investigated here. Its multiband characteristic is enabled by the Y-slot present in the upper arm of the dipole, while the antenna\u27s dimensions are 0.08λo × 0.384λo at the lowest operating frequency. It features bandwidth of 14.6% centred at 2.4 GHz, and ∼30.5% centred at 5.5 GHz for WLAN operation. An additional bandwidth of 6.9% centred at 3.5 GHz supporting LTE-A applications is also featured. Besides being compact, the proposed antenna radiates omnidirectionally with a gain of up to 4.09 dBi. Simulations and measurements are in good agreement

    RSS-Based Indoor Localization System with Single Base Station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    Super compact UWB monopole antenna for small IoT devices

    Get PDF
    This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at -10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications

    Multiband slot-loaded dipole antenna for wlan and lte-a applications

    Get PDF
    A multiband printed dipole antenna for wireless local area network (WLAN) and long-term evolution-advanced (LTE-A) applications is investigated here. Its multiband characteristic is enabled by the Y-slot present in the upper arm of the dipole, while the antenna's dimensions are (0.08λo × 0.384λo) at the lowest operating frequency. It features bandwidth of 14.6% centred at 2.4 GHz, and ~30.5% centred at 5.5 GHz for WLAN operation. An additional bandwidth of 6.9% centred at 3.5 GHz supporting LTE-A applications is also featured. Besides being compact, the proposed antenna radiates omnidirectionally with a gain of up to 4.09 dBi. Simulations and measurements are in good agreement

    RSS-based indoor localization system with single base station

    Get PDF
    The paper proposes an Indoor Localization System (ILS) which uses only one fixed Base Station (BS) with simple non-reconfigurable antennas. The proposed algorithm measures Received Signal Strength (RSS) and maps it to the location in the room by estimating signal strength of a direct line of sight (LOS) signal and signal of the first order reflection from the wall. The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office, sampling 21 different locations in the room. It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80% confidence Cumulative Distribution Function (CDF) user level, demonstrating the ability to accurately estimate the receiver’s location within the room. The system is intended as a cost-efficient indoor localization technique, offering simplicity and easy integration with existing wireless communication systems. Unlike comparable single base station localization techniques, the proposed system does not require beam scanning, offering stable communication capacity while performing the localization process

    A triangular MIMO array antenna with a double negative metamaterial superstrate to enhance bandwidth and gain

    Get PDF
    Multiple-input-multiple-output (MIMO) array antenna integrated with the double negative metamaterial superstrate is presented. The triangular metamaterial unit cell is designed by combining two triangular elements positioned in complementary on the same plane at different sizes. Such design with more gaps is used to excite rooms for more capacitance effects to shift the resonance frequency thus enlarging the bandwidth of the MIMO antenna. The unit cell is arranged in 7 × 7 periodic array created a superstrate metamaterial plane where the Cstray exists in parallel between the two consecutive cells. It is found that the existence of Cstray and gaps for each unit cells significantly influenced the bandwidth of the MIMO antenna. The higher value of the capacitance will lead to the negativity of permittivity. The superstrate plane is then located on top of the 4 × 2 MIMO with a gap of 5 mm. The integration resulted in improving the bandwidth to 12.45% (5.65-6.4GHz) compared to only 3.49% bandwidth (5.91-6.12GHz) of the MIMO antenna itself. Moreover, the negative permeability characteristic is created by a strong magnetic field between the complementary unit cells to have 14.05-dBi peak gain. Besides that, the proposed antenna managed to minimize the mutual coupling and improve the mean effective gain, envelope correlation coefficient, and multiplexing efficiency

    UWB Antenna with Enhanced Directivity for Applications in Microwave Medical Imaging

    No full text
    Microwave medical imaging (MMI) is experiencing a surge in research interest, with antenna performance emerging as a key area for improvement. This work addresses this need by enhancing the directivity of a compact UWB antenna using a Yagi-Uda-inspired reflector antenna. The proposed reflector-loaded antenna (RLA) exhibited significant gain and directivity improvements compared to a non-directional reference antenna. When analyzed for MMI applications, the RLA showed a maximum increase of 4 dBi in the realized gain and of 14.26 dB in the transmitted field strength within a human breast model. Moreover, it preserved the shape of time-domain input signals with a high correlation factor of 94.86%. To further validate our approach, another non-directional antenna with proven head imaging capabilities was modified with a reflector, achieving similar directivity enhancements. The combined results demonstrate the feasibility of RLAs for improved performance in MMI systems

    Hexagonal Shaped Near Zero Index (NZI) Metamaterial Based MIMO Antenna for Millimeter-Wave Application

    No full text
    A single-layered multiple-input multiple-output (MIMO) antenna working at 28 GHz loaded with a compact planar-patterned metamaterial (MTM) structures is presented in this paper for millimeter-wave application. A combination of a split square and hexagonal shaped unit cell is designed and investigated with a wide range of effective near-zero index (NZI) of permeability and permittivity, along with a refractive index (NZRI) property. The metamaterial characteristics were examined through the material wave propagation in two main directions at y and x-axis. For wave propagation at the y-axis, it demonstrates mu-near-zero (MNZ) with more than 6 GHz bandwidth, near-zero refractive index (NZRI), and epsilon-near-zero (ENZ) properties. However, it indicates a wide negative range of single mu metamaterial (MNG) from 27.6 to 28.9 GHz frequency span at x-axis wave propagation. A single antenna with 3 × 3 metamaterial unit cells is proposed to operate at a frequency band (24 - 30) GHz. Furthermore, MIMO antenna with only 4 mm space between antenna elements provides high isolation of more than 24 dB. The measured results show that the MIMO antenna is satisfied with 6 GHz bandwidth, and maximum peak gain of 12.4 dBi. In addition to that, the proposed MIMO antenna loaded with MTM has also shown good performances with high diversity gain (DG > 9.99), envelope correlation coefficient (ECC) lower than 0.0013, channel capacity loss (CCL) <; 0.42, total active reflection coefficient (TARC) <; -7 dB, total efficiencies of higher than 98%, with an overall antenna size of 52 mm × 23 mm

    Eight-Port Metamaterial Loaded UWB-MIMO Antenna System for 3D System-in-Package Applications

    No full text
    In this article, an eight-elementultra-wideband (UWB) Multiple-Input-Multiple Output (MIMO) antenna system is proposed for 3D non-planar applications. The proposed UWB-MIMO antenna is installed around a polystyrene block in the 3D-octagonal arrangement. The eight radiating elements are placed on thesidesof the octagonalpolystyrene block with topand bottom surfaces left open. The single antenna element consists of a modified Y-shaped radiating patch, epsilon-negative (ENG) metamaterial,and a partial ground plane. A modified pie-shaped decoupling structure is deployed at the back-side of the radiating patch to improve the isolation amongarray elements. Each antenna element is printed on a low-cost FR-4 substrate with dimensions of 28 mm × 23 mm with coverage of the whole UWB spectrum from3.1 to 10.6 GHz frequency band. The eight-port UWB-MIMO antenna system consists of symmetric and non-symmetric array configurations.Simulated and measuredMIMO performance parameters i.e. Channel Capacity Loss (CCL) < 0.35, Envelope Correlation Coefficient (ECC) < 0.0025 and TotalActive Reflection Coefficient (TARC) < -11 dB are in acceptable limits for both symmetric and non-symmetric configurations. The proposed MIMO antenna system is suitable for 3D system-in-package, indoor localization systems, and wireless personal area network applications in industries where multiple machines are connected to a central server wirelessly through suchkindsof antennas in a rich scattering environmen

    Massive metamaterial system-loaded MIMO antenna array for 5G base stations

    No full text
    An integrated massive multiple-input multiple-output (mMIMO) antenna system loaded with metamaterial (MTM) is proposed in this article for fifth-generation (5G) applications. Besides, achievement of duple negative (DNG) characteristics using a proposed compact complementary split-ring resonator (SRR), a broad epsilon negative metamaterial (ENG) with more than 1 GHz bandwidth (BW), and near-zero refractive index (NZRI) features are presented. The proposed mMIMO antenna consists of eight subarrays with three layers that operate in the 5G mind band at 3.5 GHz (3.40–3.65 GHz) with high port isolation between adjacent antenna elements compared to an antenna that does not use MTM. Each subarray has two patches on the top layer, while the middle and bottom layers have two categories of full and partial ground plans, respectively. Simulated, produced, and tested are 32 elements with a total volume of 184 × 340 × 1.575 mm3. The measured findings reveal that the sub-6 antenna has a better than 10 dB reflection coefficient (S11), a lower than 35 dB isolation, and a peak gain of 10.6 dBi for each subarray. Furthermore, the recommended antenna loaded with MTM has demonstrated good MIMO performance with an ECC of less than 0.0001, total efficiencies of more than 90%, more than 300 MHz bandwidth, and an overall gain of 19.5 dBi
    corecore