5 research outputs found

    WhiskEras: A New Algorithm for Accurate Whisker Tracking

    Get PDF
    Rodents engage in active touch using their facial whiskers: they explore their environment by making rapid back-and-forth movements. The fast nature of whisker movements, during which whiskers often cross each other, makes it notoriously difficult to track individual whiskers of the intact whisker field. We present here a novel algorithm, WhiskEras, for tracking of whisker movements in high-speed videos of untrimmed mice, without requiring labeled data. WhiskEras consists of a pipeline of image-processing steps: first, the points that form the whisker centerlines are detected with sub-pixel accuracy. Then, these points are clustered in order to distinguish individual whiskers. Subsequently, the whiskers are parameterized so that a single whisker can be described by four parameters. The last step consists of tracking individual whiskers over time. We describe that WhiskEras performs better than other whisker-tracking algorithms on several metrics. On our four video segments, WhiskEras detected more whiskers per frame than the Biotact Whisker Tracking Tool. The signal-to-noise ratio of the output of WhiskEras was higher than that of Janelia Whisk. As a result, the correlation between reflexive whisker movements and cerebellar Purkinje cell activity appeared to be stronger than previously found using other tracking algorithms. We conclude that WhiskEras facilitates the study of sensorimotor integration by markedly improving the accuracy of whisker tracking in untrimmed mice

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU

    FlexHH: A Flexible Hardware Library for Hodgkin-Huxley-Based Neural Simulations

    Get PDF
    The Hodgkin-Huxley (HH) neuron is one of the most biophysically-meaningful models used in computational neuroscience today. Ironically, the model's high experimental value is offset by its disproportional computational complexity. To such an extent that neuroscientists have either resorted to simpler models, losing precious neuron detail, or to using high-performance computing systems, to gain acceleration, for complex models. However, multicore/multinode CPU-based systems have proven too slow while FPGA-based ones have proven too time-consuming to (re)deploy to. Clearly, a solution that bridges user friendliness and high speedups is necessary. This paper presents flexHH, a flexible FPGA library implementing five popular, highly
    corecore