
Received May 27, 2020, accepted June 20, 2020, date of publication July 3, 2020, date of current version July 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007019

flexHH: A Flexible Hardware Library for
Hodgkin-Huxley-Based Neural Simulations
RENE MIEDEMA 1, GEORGIOS SMARAGDOS1, (Member, IEEE), MARIO NEGRELLO1,
ZAID AL-ARS 2, (Member, IEEE), MATTHIAS MÖLLER3, AND
CHRISTOS STRYDIS1, (Senior Member, IEEE)
1Neuroscience Department, Erasmus Medical Center, 3000 Rotterdam, The Netherlands
2Quantum and Computer Engineering Department, Delft University of Technology, 2628 Delft, The Netherlands
3Applied Mathematics Department, Delft University of Technology, 2628 Delft, The Netherlands

Corresponding author: Christos Strydis (c.strydis@erasmusmc.nl)

This work was supported by the European Union Horizon 2020 Projects, in part by VINEYARD under Grant 687628, and in part by
EuroEXA under Grant 754337.

ABSTRACT The Hodgkin-Huxley (HH) neuron is one of the most biophysically-meaningful models
used in computational neuroscience today. Ironically, the model’s high experimental value is offset by its
disproportional computational complexity. To such an extent that neuroscientists have either resorted to
simpler models, losing precious neuron detail, or to using high-performance computing systems, to gain
acceleration, for complex models. However, multicore/multinode CPU-based systems have proven too slow
while FPGA-based ones have proven too time-consuming to (re)deploy to. Clearly, a solution that bridges
user friendliness and high speedups is necessary. This paper presents flexHH, a flexible FPGA library
implementing five popular, highly parameterizable variants of the HH neuron model. flexHH is the first
crucial step towards making FPGA-based simulations of compute-intensive neural models available to
neuroscientists without the debilitating penalty of re-engineering and re-synthesis. Through flexHH, the user
can instantiate custom models and immediately take advantage of the acceleration without the mediation of
an engineer, which has proven to be amajor inhibitor to full adoption of FPGAs in neuroscience labs. In terms
of performance, flexHH achieves speedups between 8×–20× compared to sequential-C implementations,
while only a small drop in real-time capabilities is observed when compared to hardcoded FPGA-based
versions of the models tested.

INDEX TERMS Hodgkin-Huxley, data-flow computing, neural network.

I. INTRODUCTION
The field of computational neuroscience focuses on
explaining and predicting experimental neuroscientific data.
A method to understand how biological-brain systems orga-
nize and process information.

Neuroscientists use hypotheses formulated using in-silico
experimentation that can subsequently be validated by more
informed and guided biological tests, to answer such ques-
tions. Among the most popular realistic models for such
purposes are Spiking-Neural-Network (SNN) models [1], [2]
of the Hodgkin-Huxley (HH) variety [3] (other formalisms
exist as well, such as Izhikevich and Integrate-and-Fire
models). The choice of SNN model depends on the studied

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

problem [4]. When exploring the electrochemical properties
that faithfully reproduce neuronal response, a biophysically-
meaningful neuron model is required, such as the HH model.
These models capture closely the electrochemical behavior
that produces the neuron activity by modeling the various
cell-membrane ion channels. The ultra-high computational
complexity of the standard HH model and its extensions
is what makes such models challenging to simulate using
traditional computing approaches.

Owing to the high computational requirements of HHmod-
els, neuroscientists have explored FPGA solutions in the past.
The community has embraced the speed gains of FPGAs only
to soon become frustrated by the steep programming curve
and the design rigidity they also entail. Hardcoded models
been especially limiting given the ‘‘trial-and-error’’ mentality
of researchers who are constantly modifying their models

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121905

https://orcid.org/0000-0002-0447-1083
https://orcid.org/0000-0001-7670-8572
https://orcid.org/0000-0002-1443-9458


R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

trying to fit them to ever-changing biological data. This mov-
ing target, combined with recurring coding efforts, have led
FPGA supporters to grudgingly move to more flexible and
programming-friendly platforms, namely CPUs and GPUs,
to be discussed in Section II.

However, we are convinced that fast and flexible models
using FPGAs are possible: First off, a careful combing of
the online ModelDB repository [5] and of literature at large
reveals that the vast majority of available models comprises
a few common systems of Ordinary Differential Equations
(ODEs) which are highly parallelizable as workloads (sub-
ject to the solver used, of course); as a matter of fact, neu-
ron models often are dataflow workloads. Secondly, modern
FPGAs have made large strides in High-Level Synthesis
(HLS) improving programmability. For the special case of
dataflow applications in particular, there is a unique offering
by Maxeler Technologies: a Dataflow-Engine (DFE). DFEs
are FPGAs programmed through the MaxJ programming
language; essentially Java generating HDL dataflow code [6].
DFEs capitalize on the simplified control requirements of
dataflow applications and allow for at least an order of magni-
tude better-performing DFE applications compared to estab-
lished HLS solutions due to utilizing the entirety of the FPGA
resources for implementing useful functional units rather than
complex control flow.

The above observations provide a strong hint towards
designing one or a few reusable DFE kernels that can be
used to efficiently simulate more than a single neuron-
model configuration. Besides, FPGAs have outright benefits
compared to other acceleration platforms like GPUs, such
as low-latency on-chip memory (BRAM) which minimizes
data moves making low-latency, real-time simulations possi-
ble [7]. Therefore, in this paper we develop, validate against
a reference design and extensively evaluate flexHH, a unique,
flexible, synthesis-free, DFE-based library of five HH-model
variants, which are among the most compute-intensive neu-
ron models in the field.

This work builds upon BrainFrame [7], a Cloud-based
High-Performance Computing (HPC) framework for accel-
erating computational-neuroscience experiments by employ-
ing multiple acceleration technologies (Intel Xeon-Phi CPU,
Nvidia GPU, Maxeler DFE). By controlling a mix of het-
erogeneous accelerators, BrainFrame assigns the best-suited
accelerator to each new simulation request by matching opti-
mal accelerator to particular model properties. BrainFrame
has been validated with hardcoded models so far but, for
the Cloud service to be useful in practice, it must allow
neuroscientists to develop their own models using flexible
model libraries, such as flexHH. The contributions of this
work are as follows:

• flexHH, a synthesis-free, scalable and high-performing
FPGA library of parameterizable and NeuroML-
compliant [8] HH models. It is available online.1

1https://gitlab.com/neurocomputing-lab/Inferior_
OliveEMC/flexhh.

• A detailed performance and power analysis of the
flexHH kernels and their potential.

• All in all, practical proof that modern FPGAs can indeed
facilitate fast and versatile neuro-simulations for realis-
tic experimentation.

The paper structure is as follows: Section II dis-
cusses related work on high-performance SNN simulators.
Section III provides background information about Hodgkin-
Huxley modeling. In Section IV, the implementation of the
new flexHH library is detailed. Validation of flexHH, eval-
uation of its performance and its power usage, and a com-
parison of its efficiency are discussed in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK
In literature, various efforts have been made to pro-
vide parameterizable and high-performing neuron models.
A major challenge resides in accelerating this particular
type of HH models, while still keeping modeling flexibility
high. In this context, we present a concise overview of the
current art.

On the GPU front, Beyeler et al. [9] have developed a
large-scale SNN simulator based on C/C++, called CarlSim.
Currently in its 4th version, the simulator provides a variety
of features alongside GPU acceleration support.With suitable
hardware, the simulator can support networks of hundreds of
thousands of neurons. However, at the moment it does not
support complex models, such as conductance models like
HH models. A more complete GPU/CPU accelerated simu-
lator is NCS6 [10]. It provides similar features to CarlSim
but also includes HH modeling. Even though HH models are
supported, the performance of the simulator when running
HHmodels is unclear and no extra updates have been reported
in recent years.

On the FPGA front, there are a few simulator proposals
that are quite notable, as well. SNAVA, by Sripad et al. [11],
is a multi-FPGA SNN simulator focused on large-scale neu-
ron simulations. The simulator supports a variety of models
using 16-bit fixed-point arithmetic operations. The archi-
tecture, though, does not support more complex modeling
such as HH models. The most promising solution, both in
terms of usability and computational capabilities, was pro-
posed by Cheung et al. [12] with NeuroFlow. In this work,
the researchers integrated PyNN to their multi-DFE-based
simulator. NeuroFlow also provides a very complete library
of IPs in the back-end. The performance and efficiency anal-
ysis is presented for a single use case of a generally simpler
model (Izhikevich) with relatively low connectivity density
(about 10%), showing impressive results. The behavior and
performance of the system for the rest of the supported fea-
tures, on the other hand, is not self-evident and is expected
to be significantly reduced, especially for more demanding
modeling [7]. Furthermore, the proven applicability of Neu-
roFlow in the case of HH models is very limited due to
relying on event-driven simulations only, which can often be

121906 VOLUME 8, 2020

https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/flexhh
https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/flexhh


R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

impractical for HH models. From the above, it becomes
apparent that flexHH is an essential approach for success-
fully tackling biophysically-meaningful models at high per-
formances and high modeling flexibility with virtually no
programming effort. To the best of our knowledge, no such
work has been published before.

III. THE HODGKIN-HUXLEY NEURAL MODEL
The HH neural networks described in this paper are repre-
sented by a set of ODEs. This means that a suitable ODE
solver is needed to ‘solve’ (i.e. simulate) these models.
A typical ODE solver is the forward-Euler method which is
described by (1), where un is a vector holding the (approx-
imated) state variables at step n, 1t is the time-step size,
and f a vector describing the derivatives of each state
variable:

un+1 = un +1t · f (un) (1)

flexHH has been initially built to support the forward-
Euler method as a straightforward method of tackling the
typically stiff HH equations. However, the flexHH library has
been designed to be modular so as to support different types
of solvers in the future, as the need arises. This modularity
is underpinned by the high-level language used to code the
flexHH library, which isMaxeler Java (MaxJ), to be discussed
in the next section.

To provide a general HH-model description required for
our accelerated-library kernels, the models implemented are
formulated based on standards compatible with a NeuroML
description [8]. NeuroML is a popular format for represent-
ing computational neural models with a hierarchy similar
to biological neurons and has been largely adopted by the
neuroscientific community. In this way, flexHH can be seam-
lessly accepted and used by its targeted audience. From top
to bottom, the hierarchy is as follows: network, cell, com-
partment, ion channel (comprising one or more ion-channel
gates). A schematic overview is given in Fig. 1. The classical
HH model is a single-cell model consisting of a single com-
partment with three ion gates which can be described by the
three standard HH equations [3].

For defining the flexHH-library properties and also as
a heavily researched model in and of itself, we checked
here – without loss of generality – against the Inferior
Olive (IO)-model [13], previously used to also evaluate the
BrainFrame proof-of-concept system [7]. The IO-model cap-
tures many modern extensions to the basic HH model, then
called extended Hodgkin-Huxley (eHH). These extensions
are: intercellular connections (gap junctions), multiple cell
compartments per cell (here: three; Dendrite, Soma, Axon),
and additionally to the standard gate equations, the IO model
contains additional, user-defined ion gates.

A DFE library supporting the required features in a mod-
ular and flexible way provides a basis for covering a vast
variety of possible eHH models.

FIGURE 1. Schematic overview of neural network of 6 cells (a). Visible is
also a single neuron cell (b), and a single cell compartment with gates in
red (c).

TABLE 1. Supported eHH-model features per flexHH kernel.

IV. flexHH-LIBRARY IMPLEMENTATION
A. OVERVIEW
This first version of flexHH targets a single DFE node.
Besides the standard HHmodel, three crucial extensions were
added: User-defined ion gates, gap-junction interconnectiv-
ity, and support for multi-compartmental cells. Each feature
incurs a hardware-resource overhead that is subsequently
translated into a performance overhead on the DFE technol-
ogy. In order to keep performance as high as possible, flexHH
has been built to provide five different instances (or kernels),
each incorporating more or less a superset of features com-
pared to its predecessor. That way, the neuroscientist can opt
for using a library instance as closely matched to the problem
at hand as possible for achieving the highest speed or themax-
imum network capacity possible; see Table 1: The simplest
flexHH kernel (HH) supports the basic HH model. The HH
fully featured (HH+custom+multi+gap) kernel supports all
eHH features and can, for instance, simulate the complete IO
model. New model characteristics which cannot be described
by the current set of features, such as synaptic plasticity, can
be implemented similarly to the ones already implemented.
flexHH is designed to the be as extendable as required.

In case of single-compartmental cells, the terms cell and
compartment are interchangeable. The ODE systems imple-
mented are represented by state variables comprising mem-
brane potentials of the compartments (Vi) and gate-activation

VOLUME 8, 2020 121907



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

variables (yi),2 where i is the index of the variable. The index
can be a combination of multiple integers; e.g. to represent
gate h of compartment k of cell j, the index (j, k , h) can
be used. Those state variables – which are single-precision,
floating-point variables – are updated as described in
Algorithm 1.

Algorithm 1 HH-Model Evaluation
1: for 0 ≤ i < Nsteps do
2: for 0 ≤ j < Ncells do
3: for 0 ≤ k < Ncomps,j do
4: for 0 ≤ h < Ngates,j,k do
5: Yi,j,k,h← updateY(gateConsts, Y, dt)
6: end for
7: Vi,j,k ← updateV(gateConsts, compConsts,
8: cellConsts, V, dt)
9: end for

10: end for
11: end for

For each simulation, the solver is invoked for updating the
neural network for a predefined number of steps Nsteps and
with a time step dt . For each gate (in Ngates) of each compart-
ment (in Ncomps) of each cell (in Ncells) – across simulation
steps –, an updateY function is called which iteratively
updates the values of the gate-activation variables yi. For
each compartment, a second function updateV updates the
compartment’s membrane-potential value Vi. Before going
over the implementation details of Algorithm 1 on a DFE,
the dataflow execution model employed in flexHH will be
briefly introduced.

B. HH-MODEL DATAFLOW-COMPUTING PARADIGM
In a dataflow application, the traditional control logic is
absent since compute dependencies are solved statically,
at compile-time. Control reduces to counters that simply
advance data through execution units in the datapath. The
dataflow paradigm allows, thus, for most FPGA resources
to be used for computations instead of control logic. It,
further, allows for applications to be implemented in a deeply
pipelined fashion leading to a high computational throughput.
The performance benefits due to the dataflow paradigm,
when compared to the control-flow paradigm, are shown
in [14]. Moreover, by programming with the MaxJ toolflow,
the programming complexity is significantly reduced in com-
parison to using low-level (e.g. VHDL) hardware-description
languages on traditional FPGA toolflows. Compared to HLS
languages (e.g. Vivado C and OpenCL) MaxJ allows for finer
control of the generated logic allowing for more efficient
use and greater optimization of the implemented design.
As a result, the Maxeler toolflow is an excellent program-
ming environment for efficient development. For a more

2An activation variable defines the proportion of ion gates in the total
population which are open.

comprehensive coverage of the subject, the interested reader
is referred to [15], [16].

To provide a flexible yet efficient as possible implementa-
tion, the following strategies were followed for flexHH:

1) GROWING-COMPLEXITY KERNELS
We provided a variety of kernels each supporting a grow-
ing set of features. Kernels with less features consume less
hardware, thus allowing for larger or faster neural-network
simulations. Thus, the flexHH user is offered a performance-
to-feature trade-off, matching their specific needs.

2) AGGRESSIVE LOOP UNROLLING
Even though eHH models are generally compatible with
dataflow execution, model features such as gap junctions
disrupt the pure dataflow paradigm to varying degrees. This
can lead to wasted cycles where compute elements are busy
crunching invalid operations (when input data is not ready),
while waiting for operations in the critical path to finish. This
is an inherent consequence of the paradigm. To mitigate this
effect, fully unrolling loops in hardware for the computations
in the critical path (or to the extend possible by available
FPGA area) was required. This led to higher area usage per
implemented function but also to increased throughput. Addi-
tionally, operations with no dependency on prior values were
overlapped with the critical-path operations when possible to
ensure even more efficient use of the available area.

3) LOW COMMUNICATION OVERHEADS
The lack of (complex) control flow in the dataflow-computing
paradigm is offset by an urgent need to feed the many
dataflow functional elements on the chip with large amounts
of input data so as to avoid DFE stalling. As the data between
the host CPU and the DFE card is channeled over (the slow,
by comparison) PCIe channel, this may introduce communi-
cation overheads. These overheads were avoided by storing
data locally on the DFE (either on the on-chip BRAM or
on the on-board DRAM) during the simulation and, thus,
minimizing communication between host and DFE.

C. HH-MODEL EQUATION GENERALIZATION
The dataflow paradigm employed over the reconfigurable
substrate is one crucial aspect of flexHH. Another is the
smart way of generalizing the equations used in key functions
updateY and updateV. A successful generalization will
permit harnessing the maximum performance of a dataflow-
driven FPGA chip while not sacrificing the crucial modeling
power of flexHH.

To implement generalized (thus, reusable) kernels on the
DFE (in hardware), the functions themselves are required
to be generalized, by exposing the parameters used for the
simulation of eHH models as user-defined input arguments.
Otherwise, a new time-consuming synthesis cycle would be
required each time a user changes the function parameters.
Therefore, each variable, parameter and constant, other than
the state variables, can be set by the user on the CPU-host.

121908 VOLUME 8, 2020



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

It is interesting to note that the adopted NeuroML stan-
dardisation seriously helps guiding the generalization pro-
cess. The description of the generalized eHH functions is as
follows: The derivative of the voltage of a HH compartment
i (note that the index can be a combination of multiple inte-
gers), is calculated through (2).

dVi
dt
=
Iapp,i − Ichannels,i − Ileak,i − Imc,i − Igap,i

C
(2)

where C is the membrane capacitance, Iapp,i is the applied
current to the respective cell or compartment, representing
external input to the network/cell, Ichannels,i is the sum of
all ion-channel currents, Ileak,i the leakage current, and Imc,i
and Igap,i are currents received from the (optionally modeled)
inter-compartment connections and from the gap junctions,
respectively. The terms Imc,i and/or Igap,i may be omitted if
the model instance does not include these features.
Ileak,i is always represented by (3), where gleak,i and Vleak,i

are the conductance and the reverse voltage of the leak-
age channel, and thus this equation does not require any
generalization.

Ileak,i = gleak,i(V − Vleak,i) (3)

The current Iapp,i can be represented by any arbitrary
mathematical function. However, the support for such flex-
ibility in hardware is impossible. Therefore, it was decided
to only support pulse functions for the evoked input, guided
by the NeuroML standard (represented in NeuroML by a
pulseGenerator). The pulse function has three param-
eters: a start step (stepstart ), an end step (stepend ), and an
amplitude (A), as can be seen in (4).

Iapp,i(step) =

{
A, if stepstart ≤ step < stepend
0, otherwise

(4)

To calculate Ichannels,i, (5) is implemented, whereNchannels,i
is the number of channels in compartment i, gc,j and Vc,j are
the conductance and the reverse voltage of each channel j,
respectively. The variable yProd represents the product of the
gate-activation variables (yk ) in a channel, calculatedwith (6),
which defines the probability that all the activation variables
have produced an open channel. As there can be multiple
gates of the same type in a channel, pk is an integer variable
which represents the number of gates in that channel.

Ichannels,i =
Nchannels,i−1∑

j=0

Ichannel,j

=

Nchannels−1∑
j=0

gc,j(V − Vc,j)yProdj (5)

yProdj =
Mgates[j]−1∏

k=0

ypkk (6)

After generalizing the HH aspects, we proceed to general-
ize the extended HH (eHH) features, as follows:

1) MULTIPLE CELL COMPARTMENTS
When multiple compartments are supported, currents are
exchanged between two adjacent compartments in the
same cell. The structure of the connections between the
compartments is a tree whose morphology can differ per
network model. To generate efficient hardware, in this ver-
sion of flexHH, we simplify the tree structure by only
assuming sequential connections among compartments. Non-
sequential connections apply only to dendro-dendritic net-
works or when dendrites have maximally two branches, thus
it is an acceptable simplification still covering a large frac-
tion of neuroscientific simulations. To calculate the current
flowing between compartments, we use a similar equation
as in the seminal work [17]. The final equation used in our
implementation is shown in (7):

Imc,i = gint

Ncomps,i−1∑
j=0

Vi − Vj
pi,j

(7)

where Ncomps,i is the number of other compartments com-
partment i is connected to in the cell, gint is the internal
conductance of the whole cell, pi,j is the surface ratio of
the two compartments i and j and Vi, Vj are their respective
membrane potentials. When this model extension is desired,
current Imc,i is added to the sum of currents for calculating
dVi/dt , as shown in (2).

2) GAP JUNCTIONS
Gap junctions are electrical connections between cells.
We have implemented a generalized version of the gap-
junction function introduced in [18] by calculating Igap,i
through (8), where c0, c1, and c2 are constants and are iden-
tical for every connection, and wi,j is the variable-connection
weight between compartments i and j, where j belongs to a
different cell than i. This way, we reduce data-storage and
memory-I/O requirements significantly, while maintaining
model flexibility. flexHH supports both the use of standard
single variables or whole functions of the form of (8) for
representing the gap-junction current.

Igap,i =
Ncells−1∑
j=0

(wi,j(c0 exp(c1 · V 2
i,j)+ c2)Vi,j) (8)

3) ION GATES
Per compartment i, each gate-activation variable (yj) is cal-
culated via (9) or (10). In case of models without support
for custom ion gates, the gate-activation variables are always
provided via (9). If custom ion gates are supported, (10) can
also be used, depending on the model needs. The transition
rates αj and βj or the target value infj and the time constant
τj are calculated either via (11) (which mirrors the functions
of gate equations in NeuroML) if custom ion gates are not
supported, or via (12) if custom ion gates are supported. The
input of both equations consists of the membrane voltage Vi
of compartment i, multiple constants – 3 in case of no custom
ion gates (k0, k1, k2) and 9 (k0, k1, .., k8) in case of custom ion

VOLUME 8, 2020 121909



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

gates – and an extra variable ft (to select a function branch),
as parameters.

dyj
dt
= (1− yj) · αj − yj · βj, (9)

dyj
dt
=

infj − yj
tauj

(10)

f (Vi, k0, k1, k2, ft )

=


k0 · (k1 − Vi)
e(k1−Vi)·k2 − 1

, if ft = 0

k0 · e(k1−Vi)·k2 , if ft = 1
1

e(k1−Vi)·k2 + 1
, if ft = 2

(11)

fCustom(Vi, k0, k1, .., k8, ft )

=



k5(k1 − Vi)
fExp(k0, (k1 − V ) k2, k3)

+ k8 if ft = 0

k8
[fExp(k0, k2(k1 − Vi), k3)

+fExp(k0, k5(k6 − Vi), k7)]

if ft = 1

fExp(k0, (k1 − Vi)k2, k3)
fExp(k4, (k6 − Vi)k5, k7)

+ k8 if ft = 2

min(k0 v, k1) if ft = 3
where :

fExp(scale, x, offset) = scale · exp(x)+ offset

(12)

D. HARDWARE IMPLEMENTATION
Having defined the generalized functions, we can finally
implement them efficiently as DFE kernels, following the
previously discussed strategies, where the parameters can
change without the need for resynthesising. For the imple-
mentation, firstly, the generalized equations discussed in
Section IV-C are coded as computational blocks using the
MaxCompiler high-level-synthesis functions. This leads to
the architecture shown in Fig. 2. The system architecture
of the DFE consists of a host CPU which establishes
input/output data streams to the DFE board and the on-
board memory. The DFE comprises (FPGA) on-chip, fast
BRAM memory and on-board, slower DRAM memory
alongside the reconfigurable chip. The input data consists
of the initial values of the state variables and the parameters
of the generalized functions (the updateV and updateY
parameters). Consequently, the behaviour of the model can
be modified on the host CPU without resynthesizing. The
output consists of state-variable values at each time step.
The amount of input/output data required to be transferred
is too large to fit into the FPGA BRAMs in the general
case and, therefore, those parameters are placed into the on-
boardDRAM.The data transfers between board and host only
occur before and after a simulation run to prevent any data-
transfer bottleneck. Furthermore, to adhere to the dataflow
paradigm, the parameters of the generalized functions (the
updateV and updateY parameters) are streamed to the
DFE kernel, from the on-board DRAM, at appropriate times
during the simulation. In contrast, the state variables are

FIGURE 2. Schematic overview of implementation on the DFE.

updated frequently and, therefore, are stored in the BRAMs
to reduce transfer latencies.

The implementation of the DFE kernel, as shown
in Fig. 2, consists of computational blocks implementing
the updateY and updateV functions. Within updateY
there are two computational blocks of f, each having the
functionality of (11) or its more complex variant (12),
depending on whether custom ion gates are supported. Addi-
tionally, in calcDydt the derivative dyj/dt is calculated
with either (9) or (10). Within updateV, the currents
Ichannels,i, Iapp,i, Imc,i, and Igap,i are calculated via the func-
tions calcIChannels, calcIApp, calcIComp, and
calcIGap, respectively. Depending on which of the five
kernels is instantiated, calcIComp and/or calcIGapmay
be omitted. With the use of these functions, dVi/dt is calcu-
lated in calcDvdt. The final step in both updateY and
updateV is to update the state variables (yj and Vi) with the
forward-Euler method in the ODE Update blocks.

Next, we present the pseudocode and detail the implemen-
tation of each functional block shown in Fig. 2. To retain
high hardware efficiency and avoid idle cycles, a number of
issues had to be addressed and are also discussed next.We like
to remind the reader that, in the following, the variables are
processed in a streaming fashion and that the variable indices
can also be a combination of multiple integers.

1) VARIABLE INNER LOOP
The iterations of the computation loops of Algorithm 1 are
used to control execution flow, as enforced by the dataflow
programming paradigm, implemented with hardware coun-
ters. The maximum value of the innermost loop is received
as input stream. Therefore, a buffer is used to hide the
input latency of the stream, as inspired by the dfesnippets

121910 VOLUME 8, 2020



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

library [19], to allow for an efficient dataflow implemen-
tation. Consequently, the number of total operation ticks is
increased by 4 (the input latency), however, this is a negligible
increase compared to the overall operation ticks and the
benefit of buffering.

2) ION GATES
To update the gate variables (yj) without custom ion gates,
the derivative dyj/ dt from (9) is used. For this equation,
the calculations of both αi and βi are done using (11).
For the implementation of (11), the amount of divisions
and exponentiations is minimized, as Algorithm 2 shows,
to reduce the hardware usage of this function. This optimiza-
tion is done so that – independent of the Maxeler tools – the
hardware-usage is minimized. Both αi and βi employ this
function, consequently, this algorithm is generated twice for
the implementation.

Algorithm 2 Pseudocode of f, a Generalized Function to
Calculate α and β
1: function f(Vi, k0, k1, k2, ft )
2: Vdiff ← k1 − Vi F Define variable which is used

multiple times
3: if ft == 0 then
4: num← k0 × Vdiff
5: c←−1
6: else if ft == 1 then
7: num← k0
8: c← 0
9: else if ft == 2 then

10: num← 1
11: c← 1
12: end if
13: denum← exp (Vdiff × k2)+ c

14: return
num
denum

15: end function

For the kernels which support custom ion gates, instead of
Algorithm 2, Algorithm 3 is implemented. From this func-
tion, two instances are created to either calculate αj and βj or
infj and τj, depending on whether yj is updated with equation
(9) or (10), respectively. The final choice of equation for
updating yj is, then, selected by an extra if-else statement
(which translates to a hardware multiplexer) for which the
variable ft is automatically used as selector.

3) calcIApp
The function calcIApp implements (4), as shown in
Algorithm 4.

4) calcIChannels
To calculate Ichannels, yProd is required which is calculated
through an exponentiation. In hardware, an exponentiation
cannot be generated with a variable exponent of power pj.
Therefore, we multiply the variable yj with itself (to be able

Algorithm 3 Pseudocode for fCustom, a Generalized Func-
tion to Calculate α, β, inf and τ for Kernels Which Support
Custom Ion Gates, and the Function fExpWhich Is Used in
fCustom
1: function fCustom(V , k0, k1, .., k8, ft )
2: Vdiff ← k1 − V
3: Vdiff 2← k6 − V
4: if (ft AND 11b) == 0 then F Use mask on ft for

selector
5: z12← Vdiff
6: else
7: z12← Vdiff 2
8: end if
9: z1← k2 · Vdiff
10: z2← k5 · z12
11: exp1← fExp(k0, z1, k3)
12: exp2← fExp(k4, z2, k7)
13: if ft == 0 then
14: num← z2
15: denum← exp1
16: else if ft == 1 then
17: num← k8
18: denum← exp1+ exp2
19: else if ft == 2 then
20: num← exp1
21: denum← exp2
22: else if ft == 3 then F Unused variables
23: num← 0
24: denum← VDiff
25: end if
26: y←

num
denum

27:

28: if ft ! = 1 then F Function branches 0 and 2 require
extra addition

29: y← y+ k8
30: end if
31: y1← min(z1, k0)
32: if ft == 3 then F Use min function instead of

division in case of function branch 3
33: y← y1
34: end if
35: return y
36: end function
37:

38: function fExp(scale, x, offset)
39: return scale× exp(x)+ offset
40: end function

to support the IO model powers up to and including pj = 4
are supported), combined with a multiplexer to select either
yj multiplied with itself or the unmodified yj. This is shown
in the pseudocode of Algorithm 5. Furthermore, following
the dataflow paradigm, the loop used for the sum of (5) is
completely unrolled in hardware preventing any stalls and,
thus, wasted operations cycles. The pseudocode to calculate
Ichannels is shown in Algorithm 6.

VOLUME 8, 2020 121911



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

Algorithm 4 Pseudocode of calcIApp
1: function calcIApp(stepstart , stepend ,A, step)
2: if (step ≥ stepstart ) ∧ (step < stepend ) then
3: Iapp← A
4: else
5: Iapp← 0
6: end if
7: return Iapp
8: end function

Algorithm 5 Pseudocode for calcYProd. The
stream.offset Function Selects a Previous Value
of the Stream
1: function calcYProd(y, p, gGate)
2: yProd ← y
3: if p > 1 then
4: yProd ← yProd × y
5: end if
6: if p > 2 then
7: yProd ← yProd × y
8: end if
9: if p > 3 then
10: yProd ← yProd × y
11: end if
12: gOld ← stream.offset(gGate,−1)
13: if gOld == 0 then F Check if channel consists out

of multiple gates
14: yProdOld ← stream.offset(yProd,−1)
15: yProd ← yProd × yProdOld
16: end if
17: return yProd
18: end function

5) calcIComp
Because of the sequential structure between multiple com-
partments, compartment k will only receive currents (which
is calculated by (7)) from compartments k−1 and k+1, when
k − 1 and k + 1 are within the limits of the cell. Because
of the supported structure, for the outgoing current to other
compartments of a single compartment Icomp,i, there are three
positions a compartment can be in:
• The starting position
In this case, the compartment only exchanges current
with the compartment next in line as there is no com-
partment before. This results in (13) for the calculation
of the current:

Icomp,i =
Vi − Vi+1
1− pi,i+1

gint (13)

• In between other compartments
When a compartment i is in between other compartments
it means that compartment i is connect to two other
compartments. Therefore, it exchanges current with both
neighbouring compartments. This results in (14) for the

Algorithm 6 Pseudocode for calcIChannels. The
stream.offset Function Selects a Previous Value of the
Stream
1: function calcIChannels(Ngates, Vc, yProd , gc, V ,
Ngates,max)

2: iChannels← 0
3: for 0 ≤ i ≤ Ngates,max pardo F Unrolled in hardware
4: Goffset ← stream.offset(gc,−i)
5: Vc,offset ← stream.offset(Vc,−i)
6: YProdoffset ← stream.offset(yProd,−i)
7: iChannel ← YProdoffset × Goffset (V − Vc,offset )
8: if i < Ngates then
9: iChannels← iChannels+ iChannel
10: else
11: iChannels← iChannels
12: end if
13: end for
14: return iChannels
15: end function

calculation of the current:

Icomp,i = (
Vi − Vi+1
1− pi,i+1

+
Vi − Vi−1
pi−1,i

)gint (14)

• The ending position
In this case the compartment only exchanges current
with the compartment which lays before in the line. This
results in (15):

Icomp,i =
Vi − Vi−1
pi−1,i

gint (15)

As follows from (13) to (15), (14) (the current when
compartment i is between other compartments) is the sum
of (13) (the current at the starting position) and (15) (the
current at the ending position). Consequently, (13) is stored
in Icomp,next and (15) is stored in Icomp,prev and based on the
position one, of these currents or the sum of these current
is chosen for Icomp,i. Additionally, a current of zero could
be chosen which will allow single-compartmental cells in
the network. The implementation of calcIChannels is
shown in Algorithm 7.

6) calcIGap
The calculation of Igap,i is calculated through (8). As this
function reveals, for each cell a summation of Ncells is
required. The summation is impossible to completely unroll
in hardware due to the limited hardware resources. Therefore,
the summation can be implemented in two ways: Either the
summation per cell can be done continuously, or the summa-
tions of different cells can be done alternatingly. In the first
way, the gap-junction current of one cell (Igap,i) is calculated
before the summation of the next cell (Igap,i+1) is calculated.
In this way, the latency of one addition operation is required to
be one, to prevent injecting bubbles in the pipeline. However,
the latency of an addition with floating-point variables on the

121912 VOLUME 8, 2020



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

Algorithm 7 Pseudocode of calcIComp
1: function calcIComp(i,Ncomps,Vs, ps, gint )
2: iCompNext ← (Vi − Vi+1)gint/(1− pi,i+1)
3: iCompPrev← (Vi − Vi−1)gint/pi−1,i
4: iCompAll ← iCompNext + iCompPrev
5: if Ncomps == 1 then
6: iComp← 0
7: else if i == 0 then
8: iComp← iCompNext
9: else if i == (Ncomps − 1) then

10: iComp← iCompPrev
11: else
12: iComp← iCompAll
13: end if
14: return iComp
15: end function

Algorithm 8 Pseudocode of calcIGap
1: procedure calcIGap(Ncells, iGapMem, vMem, cs)
2: for i ∈ {0, uf , 2 uf , . . . ,Ncells} do
3: for 0 ≤ j < Ncells do
4: if i == 0 then
5: iGapOld ← 0
6: else
7: iGapOld ← iGapMem.read(j) F Read

BRAMs
8: end if
9: Vown← vMem.read(j) F Read BRAMs
10: for 0 ≤ k < uf pardo F Unrolled in

hardware
11: Vother ← vMem.read(i+ k) F Read

BRAMs
12: Vdiff ← Vown − Vother
13: iGapTemp[k] ←

wj,i +k (cs[0] exp(cs[1]V 2
diff )+ cs[2])Vdiff )

14: end for
15: iGapNew← iGapOld + sum(iGapTemp)
16: iGapMem.write(j, iGapNew)
17: end for
18: end for
19: end procedure

targeted DFE requires more than one cycle. Consequently,
pipeline bubbles cannot be avoided in this case. On the other
hand, by alternating the additions of different summations of
the different cells, the updated values are only required after
each cell has completed its addition. This prevents the bub-
bles from occurring, resulting in an efficiently used pipeline.
Thus, we opted to the alternating implementation, which can
be seen in Algorithm 8. This implementation requires that the
intermediate results are stored in memory, which is the reason
for using iGapMem in Algorithm 8.

7) LOOP UNROLLING
To increase the performance of the kernels, loop unrolling
is applied which leads to more operations being executed

concurrently. How large this unroll factor uf is depends on
the problem size; i.e., supported model features and neural-
network size. The larger the unroll factor or the problem size,
the greater the resource usage. Additionally, an increase in
the unroll factor leads to a higher required I/O bandwidth and,
therefore, the performance gain of increasing the unroll factor
can be limited by the available bandwidth between the on-
board DRAM and the FPGA.

The part of overall Algorithm 1 to be unrolled depends on
the presence of gap junctions in the model. If there are no
gap junctions instantiated, then the performance complexity
of both updateY and updateV is equal to 2(1), in which
case we opt for unrolling the updateY loop (lines 4 – 6 of
Algorithm 1). However, when gap junctions are supported,
the complexity of updateV increases to 2(Ncells). Since it
is expected that there are more cells than gates per compart-
ment, in such a model instance, we opt for unrolling part
of the updateV function (lines 10 – 14 of Algorithm 8),
which refers to the gap-junction current calculations of the
cell. What is more, parts of updateV can be parallelized
at a finer granularity that updateY, therefore resulting in
a overall higher achievable loop-unroll factor in the case of
gap junctions.

V. EVALUATION
A. FUNCTIONAL VALIDATION
To guarantee functional correctness of our kernel implemen-
tations, we validate flexHH-based models against the estab-
lished (by the community) versions of the same models.

The basic HH model [3] was initially available to us in
NEURON but was rewritten in C for various analysis pur-
poses. This model is used to validate the basic HH kernel
(see Table 1). The simulation output for the validation of the
particular DFE kernel is shown in Fig. 3(a) and the absolute
error (the difference between the C and DFE output) can
be seen in Fig. 3(b). The error trace shows negligible and
bounded error, which is expected due to the difference of
the arithmetic implementation between the x86 CPU and the
FPGA libraries, and is small enough to not influence the
correctness of the output.

To validate the additional features provided by flexHH,
the HH fully featured kernel is validated against the orig-
inal IO reference code, which was verified by the devel-
opers of the model [20]. The simulation output of the C
code is shown in Fig. 3(c) for a single axon (the axon of
cell 0) and the error is shown in Fig. 3(d). Similar results
can be drawn here as with the HH model: The error, that
can be attributed to the rounding error by moving to the
different platform, is negligible and does not affect output
correctness.

Although single-cell runs are functionally correct, this is
not enough to ensure general stability of the network model.
Therefore, network-wide validation runs are also performed:
The error map of the full IO network can be seen in Fig. 3(e).
The maximum output error of individual cells in the network

VOLUME 8, 2020 121913



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

does not surpass the order of 10−3, a difference that cannot
affect cell behavior.

Additionally to the previously discussed validation,
we also compared the phase portraits of different gate vari-
ables, for both the HH and IO model, which give a quali-
tative description of the dynamics [21]. The results, plotted
in Fig. 4, show equivalent results. Consequently, we conclude
that flexHH produces correct qualitative descriptions of the
dynamics of the evaluated models. For a more comprehensive
discussion on accuracy, the reader is referred to [22].

B. EXPERIMENTAL SETUP
The next step is to assess the performance (scalability) of
flexHH. The accelerated kernels have been implemented on
a Maxeler Maia DFE. The Maia specifications are shown
in Table 2. The accelerated kernels are compared against
sequential-C implementations, optimized with the O3 flag
using the GCC 8.3.0 compiler. The C reference code is exe-
cuted on an 2.5-GHz Intel Core i7-4870HQ CPU. which is
of a similar lineage to the Maia DFE, and provides a simple
baseline against which to compare the flexHH kernels among
them. Furthermore, for a more qualitative performance com-
parison, the HH full featured kernel is compared against the
BrainFrame platform [7]. The BrainFrame platform imple-
ments a hardcoded version of the IO model on the same Maia
DFE, a Xeon Phi 5110P CPU and a Nvidia Titan X GPU.
A more detailed description of the BrainFrame implementa-
tions is given in [7].

TABLE 2. Specifications of the hardware used for performance
measurements.

The main parameters affecting resource usage are
NComps,max , Ngates,max , and uf . Since the maximum values
NComps,max , Ngates,max , and uf are interdependent, there is
a performance trade-off between maximally achievable net-
work size and performance of the kernel based on the values
of these design parameters. Besides conferring with experts,
we also polled 10% of all 660 realistic single-neuron models
available in ModelDB [5] at this moment (November 2019).
We found that 10 channels per compartment cover 89% of all
cases and have, thus, chosen to restrict the maximum number
of gates (Ngates,max) to 10 per compartment, as a reasonable
ceiling for modeling custom ion gates. Keeping this constant
at compile time bounds the DFE-resource requirements while
still allowing for a wide variety of experiments. We have
explored (but do not include here for brevity) and derived
the most viable pairs of these parameters for each one of

the five flexHH kernels, also taking into account the memory
I/O-bandwidth restrictions of the DFE. The objective was to
increase performance, by taking advantage of as much FPGA
area as possible, while still providing support for experi-
ments with network sizes of at least 20K compartments. The
kernel configurations that resulted from this exploration are
summarized in Table 3. These configurations are used for
performance evaluation, discussed next.

TABLE 3. Optimized flexHH-kernel configurations, used for evaluation
and the speedup against the CPU.

The evaluationmeasurements have been done using simple
neuron-model experiments of several-thousand simulation
steps. The HH and HH+gap kernels were tested using the
standard HH model. The HH+custom kernel test simulates
soma compartments from the IO model. Finally, both the HH
fully featured and HH+custom+multi kernel are tested using
IO cells, with each cell consisting of three compartments as
in the original model description. Kernel times include both
compute and on-board DRAM communication latency.

C. PERFORMANCE, POWER AND SCALABILITY
To derive performance speedups compared to the single-
threaded version of the kernels, we simulate runs
of 23,040 compartments (the reason for using this number
will be explained below). Using the same problem size for
each kernel gives a good basis for comparing the overheads
of the different flexHH features. Additionally, for the HH
fully featured kernel, that is tested by simulating IO neurons,
23,040 compartments account for 7,680 cells, as a single IO
cell consists of 3 compartments. This gives us a basis for
comparing the performance of our reusable library (simu-
lating 23.040/3=7,680 cells) with the previously reported
hardcoded DFE version of the IO in [7], which maximally
supports 7,680 cells.

In Table 3 (right-most column), we can see the speedup
results of our five DFE instances compared to single-threaded
C versions. The observed speedup is between 8× and 20×.
It must be noted that the C version already provides sig-
nificant performance benefits compared to the established
NEURON simulation environment, resulting in a cumulative
DFE speedup of 1,065× for the simple HH kernel compared
to NEURON. An interesting observation is that the most
complex kernel in the flexHH library actually exhibits higher
speedups compared to the simplerHH+custom+multi kernel
(when also simulating an IO cell). This can be attributed to
the instantiation of gap junctions: The higher speedup of the
HH fully featured kernel is a direct effect of the higher unroll

121914 VOLUME 8, 2020



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

FIGURE 3. (a) Output voltage for a simulation in NEURON of a single HH cell. (b) Error between C and our DFE implementation of a single HH cell.
(c) Axonal output voltage for a simulation in C of cell 0 of an IO network (fwd-Euler). (d) Error between C and the HH fully featured
implementation on the DFE. (e) Maximum absolute error of the axonal voltage per cell of the HH fully featured network implementation (i and j
are indices of a cell).

FIGURE 4. Phase portraits for the HH model (a and e) and the IO model (b, c, d, f, g, h) of both the reference, run on a CPU, code (a, b, c, d) and the
flexHH library, run on a DFE (e, f, g, h). a and e: Phase portrait of the gate variable associated with the HH-model potassium channel. b and f : Phase
portrait of the calcium concentration of the IO-cell dendrite. c and g: Phase portrait of the gate variable associated with the IO-cell soma
low-threshold calcium channel. d and h: Phase portrait of the gate variable associated with the IO-cell axon potassium channel.

factor achievable when gap junctions are present, as discussed
in Section IV-D7. Furthermore, as shown in [7], includ-
ing gap junctions in the model can dominate computational
requirements. Consequently, the kernels with gap junctions
are less restricted by I/O bandwidth restrictions, compared to
the models without gap junctions. However, the presence of
the gap junctions severely limits the maximum compartment
count.

Fig. 5 compares the performance per simulation step of
the IO model, when simulated via the flexHH HH fully
featured kernel and via three preexisting HPC kernels on
the BrainFrame platform: flexHH performs better than all

three BrainFrame implementations. Because larger networks
require more resources on a FPGA, resulting in a lower
unroll factor and thus performance, it must be noted that the
Xeon-Phi and GPU platforms are better-suited for very large
networks. Still, up to the scale tested within BrainFrame,
flexHH is shown to provide the greater benefit: The flexHH
speedup (on DFE) over the hardcoded-IO implementation of
BrainFrame is 1.36×. This performance gain is only in part
due to a higher operating frequency (180 MHz vs 150 MHz);
this accounts for a mere 20% of the speedup. Gain is observed
mostly due to the fact that the flexHH implementation does
not require pipeline flushing between simulation steps, unlike

VOLUME 8, 2020 121915



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

FIGURE 5. Execution time per simulation step for the various BrainFrame
implementations of the IO model. flexHH is the HH fully featured kernel
instantiated for the IO model; DFE hc is the BrainFrame hardcoded
version.

TABLE 4. Maximum achievable real-time NN size of flexHH and
BrainFrame kernels for various IO-model interconnectivity densities. The
HH fully featured kernel is used in all except for the 0% case where the
HH+custom+multi kernel used. Empty entries imply no real-time
performance.

the hardcoded version which did not adopt the calcIGap
optimization of using alternating cell summations.

By comparing the real-time (RT) capabilities of the flexHH
compared to the BrainFrame kernels (Table 4), we can
see that even though the flexHH kernel can support real-
time simulations considerably better than the Xeon-Phi and
GPU platforms, attainable RT networks are smaller than the
hardcoded-DFE ones when full model detail is required. Even
though – per simulation step – the flexHH version is faster
than the BrainFrame version, the model time step (which
defines the real-time constraint) for the flexHH case is much
stricter. As a result, for the same simulated brain time, flexHH
must execute more simulations steps, impacting RT perfor-
mance in this specific case.Wewill analyze this aspect further
in the following section when comparing flexHH on DFE
with other FPGA designs.

Another disadvantage of the flexHH kernels compared to
hardcoded kernels, that can impact real-time performance,
is the higher data-transfer requirements. For flexHH, besides
the initial values of the state variables, the parameters of
the equations are sent to the DFE; a necessary trade-off for
supporting user-defined HH equations. Additionally, during
the execution of the kernel, all equation parameters are per-
petually transferred from the on-board DRAM to the FPGA

FIGURE 6. Execution time per step for the HH+custom+multi.

FIGURE 7. Execution time per step for the HH fully featured.

chip as opposed to the hardcoded version that can fit all (hard-
coded) parameters to the on-chip memory (BRAMs) during
execution. These higher data-transfer requirements increase
the length of the pipeline. However, this does not negatively
influence throughput, as the higher frequency and higher
unroll factor of flexHH shows.

In terms of performance scalability, execution time scales
linearly with the gate count, for all cases. In terms of com-
partment count, on the other hand, instantiating gap junctions
significantly changes things: Even though execution time
scales linearly with compartment count in the absence of gap
junctions, the relation becomes quadratic when gap junctions
are included; see Figs. 6 and 7. Additionally, for the HH fully
featured kernel, the amount of compartments per cell has
a direct effect on performance scalability. As gap junctions
dominate execution for larger problem sizes, the more com-
partments per cell an experiment instantiates, the less gap-
junction connections will be present for the same amount
of total compartments. This allows for the execution time to
scale more gracefully the more compartments are included
within a cell (Fig. 7).
The power consumption of the kernels is measured by

using the Maxeler tools during runtime of the kernels. The
DFE power consumption for each kernel instance ranges
between 40.1 and 46.8Watts. It must be noted that the kernels
that include gap junctions exhibit a slightly lower power

121916 VOLUME 8, 2020



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

TABLE 5. Overview of competitive FPGA-based HH implementations.

consumption. This can be attributed to the fact that part of the
hardware allocated for compartment computation is generally
idle until the computation of the demanding gap junctions
is finished (as they are required to conclude before the rest
of the compartment computations). In order to compare with
the power consumption of the other acceleration platforms
of BrainFrame, we would need to perform similar power
measurements. Unfortunately, the BrainFrame paper [7] does
not report actual power numbers but resorts to comparing
the Thermal Design Power (TDP) of those platforms, which
is 225 Watts (Intel Xeon-Phi CPU) and 250 Watts (Nvidia
Titan X GPU), respectively. Given that both accelerators
are shown to be utilized at peak performance, actual power
consumption is known to be higher than the reported TDP.
As such, it is safe to conclude that the DFE consumes only
a small fraction of the power consumption of either the CPU
or GPU acceleration platform of BrainFrame. Consequently,
despite the higher acquisition costs of a DFE, it is the best
option from a long-term economic standpoint.

There is a final, interesting by-product of flexHH. Since
it does not require constant resynthesis in between simu-
lation runs, it allows for accurate predictions of execution
time and power consumption for a given problem. This
performance-predictability aspect is key to combating multi-
tenancy stochasticity in HPC clusters and Cloud deployments
alike, and can help to offer better quality of service and more
precisely estimate operational costs.

D. COMPARISON TO OTHER HH FPGA DESIGNS
To fairly assess the computational capabilities the flexHH
library, it is useful to compare against other FPGA-based
implementations of HH models with similar complexity.
Necessarily, we had to compare with works that are one-
off model implementations providing very limited model
flexibility, yet serve as relevant design points for assessing
computational capacity. Also, all works chosen use single-
precision floating-point arithmetic. Moreover, to provide a
common ground for comparison, only real-time simulations
are considered; i.e. machine execution time is equal or smaller

than the simulated brain time. The network sizes reported,
thus, are maximized for respecting real-time performance;
results are shown in Table 5.

Amain characteristic to note is the time step of each imple-
mented model. Different time-step sizes can significantly
affect the computational requirements of a model as it then
requires more computations per second in order to provide
real-time performance. Time-step size is model-dependant
but gap-junctioned HH network models tend to be generally
stiff and need small time steps for correct results. Besides,
the step size of the BrainFrame hardcoded kernel [7] is quite
relaxed compared to the flexHHHH fully featured one, which
needs to accommodate a broad range of different simulations,
thus impacting its own step size. The hardcoded implemen-
tations, as they are not meant for general use beyond the
specific models, can afford to use non-standard integration
methods that allow for the use of more relaxed time steps.
flexHH, though, must adhere to standard ODE methods to
retain its generality. Simpler models like the basic HH ker-
nel also exhibit a relaxed step size compared to their more
complex counterparts.

Looking at the real-time network support for each imple-
mentation, we see that the flexHH HH kernel outperforms
the HH implementation of Beuler et al. [23] despite having a
stricter time-step size. In the case of the IO model, on the
other hand, the hardcoded IO implementation provides a
larger real-time network. Although per time step the flexHH
is faster than the hardcoded version as described before,
having such a stricter time-step size than the BrainFrame
kernel [7], forces the flexHH kernel to conduct far greater
computations for the same simulated brain time. The imple-
mentation of Zjajo et al. [24] can support a larger network
size under real-time conditions as it would be expected with
the reduced connectivity density.

To fairly analyse the computational capacity of the differ-
ent kernels, performance is given in FLOPS (FP arithmetic
operations per second) and is measured in largest possible
networks so long as real-time simulation speeds are main-
tained. For the flexHH kernels,the BrainFrame kernel, and

VOLUME 8, 2020 121917



R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

the Zjajo kernel, FP operations are derived by the C reference
code. For the Beuler kernel, FP operations are derived from
the model description provided in their work.

In terms of FLOPS, the flexHH kernels outperform their
hardcoded counterparts: for the simple HH model about 10×
higher compared to the corresponding Beuler kernel and for
the IO model almost 2× higher compared to the BrainFrame
kernel (which is the hardcoded eHH kernel with the most
FLOPS). Compared to the Zjajo kernel, the flexHH fully-
featured kernel provides almost 3.5× more FLOPS, high-
lighting the potential that the dataflow programming has in
using reconfigurable substrates efficiently.

Since not all compared implementations use the same
FPGA hardware, it is also fair to compare the performance
density of the various designs; namely, the FLOPS per pro-
cessing element (in this case the 6-input LUT). The compu-
tational capability can, thus, be calculated for each kernel
while also accounting for device-capacity differences. The
MAX4 DFE used in the DFE-based related work as well
as for the flexHH is a Stratix V 5SGSD8. We adopt the
assumption also used in [25] that 2 ALMs ≈ 4 6-input LUTs
to transform ALM count to LUT count for the comparison
between designs. Here, the flexHH library providesmore than
twice the performance density for the simple HH case and
about 65% higher FLOPS/LUT for the IO implementation
compared to the BrainFrame hardcoded design. Compared
to the traditional FPGA-based platform of Zjajo et al. [24],
flexHH provides more than 5× higher performance density
when simulating at real-time speeds. Consequently, dataflow
programming also favors performance efficiency.

VI. CONCLUSION
In this paper, we presented a flexible, scalable and high-
performing HH-model library called flexHH and imple-
mented it on a (FPGA-based) DFE platform. flexHH enables
synthesis-free neuro-simulations while providing clear per-
formance benefits compared to C-based, single-threaded exe-
cution and traditional NEURON-based simulations. It also
performs uniformly better per simulation step than prior
hardcoded hardware implementation of models of the same
category, while maintaining high simulation flexibility. Fur-
thermore, the most feature-rich instance of the library is per-
forming better than respective Xeon-Phi and GPU implemen-
tations. Lastly, flexHH exhibits a high performance density
compared to related works, showing high efficiency in logic-
resource usage.

The high flexibility of flexHH is achieved at the cost of
potentially higher compute overheads over the same simu-
lated brain time. The need to adhere to standard HH-model
formalism and ODE solutions gives less space for model-
specific optimizations and precludes solver hacks. This can
affect performance especially in cases of real-time exper-
imentation. Whether such a cost needs be paid, though,
is highly model-dependent and relies ultimately on howmod-
elers will use flexHH during experiment design. The flexi-
bility and compliance with scientific standards, on the other

hand, make flexHH unique and immediately useful to compu-
tational neuroscientists, giving it a major advantage towards
community adoption compared to traditional FPGA-based
models. Besides, flexHH is the first work to demonstrate the
benefits of the dataflow-computing paradigm for accelerating
brain simulations.

Last but not least, since all model features are defined
at build time and resources are allocated statically, both
power and execution time can be predicted very accurately
based on problem size. A predictable application profile is an
important property when deploying on HPC clusters, which
also makes flexHH a pivotal addition to heterogeneous HPC
simulation platforms like BrainFrame.

ACKNOWLEDGMENT
The authors also wish to thank Milos Puzovic for his criti-
cal help in facilitating our Maxeler-DFE experiments in the
STFC Hartree Centre, U.K. The authors gratefully acknowl-
edge the continuous support provided by Maxeler Technolo-
gies throughout the research effort.

REFERENCES
[1] W. Maass, ‘‘Noisy spiking neurons with temporal coding have more com-

putational power than sigmoidal neurons,’’ in Proc. Neural Inf. Process.
Syst., 1996, pp. 211–217.

[2] W. Maass, ‘‘Networks of spiking neurons: The third generation of neural
network models,’’ Neural Netw., vol. 10, no. 9, pp. 1659–1671, Dec. 1997.

[3] A. L. Hodgkin and A. F. Huxley, ‘‘A quantitative description of membrane
current and its application to conduction and excitation in nerve,’’
J. Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952. [Online]. Available:
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1952.
sp004764

[4] E. M. Izhikevich, ‘‘Which model to use for cortical spiking neurons?’’
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[5] Y. U. Shepherd Lab. (2019). Modeldb, Models That Contain the Model
Type : Neuron or Other Electrically Excitable Cell. [Online]. Available:
https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=3537

[6] Whitepaper: MaxCompiler, Maxeler Technologies, London, U.K.,
Feb. 2011. [Online]. Available: https://www.maxeler.com/media/
documents/MaxelerWhitePaperMaxCompiler.pdf

[7] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H. Sidiropoulos,
D. Rodopoulos, I. Sourdis, Z. Al-Ars, C. Kachris, D. Soudris,
C. I. De Zeeuw, and C. Strydis, ‘‘BrainFrame: A node-level heterogeneous
accelerator platform for neuron simulations,’’ J. Neural Eng., vol. 14, no. 6,
Dec. 2017, Art. no. 066008. [Online]. Available: http://stacks.iop.org/
1741-2552/14/i=6/a=066008

[8] R. C. Cannon, P. Gleeson, S. Crook, G. Ganapathy, B. Marin, E. Piasini,
and R. A. Silver, ‘‘LEMS: A language for expressing complex biological
models in concise and hierarchical form and its use in underpinning
NeuroML 2,’’ Frontiers Neuroinform., vol. 8, p. 79, Sep. 2014. [Online].
Available: https://www.frontiersin.org/article/10.3389/fninf.2014.00079

[9] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krich-
mar, ‘‘CARLsim 3: A user-friendly and highly optimized library for
the creation of neurobiologically detailed spiking neural networks,’’
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1–8,
doi: 10.1109/IJCNN.2015.7280424.

[10] R. V. Hoang, D. Tanna, L. C. J. Bray, S. M. Dascalu, and F. C. Harris,
Jr., ‘‘A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling,’’ Frontiers Neuroinformat.,
vol. 7, p. 19, Oct. 2013. [Online]. Available: https://www.frontiersin.
org/article/10.3389/fninf.2013.00019

[11] A. Sripad, G. Sanchez, M. Zapata, V. Pirrone, T. Dorta, S. Cambria,
A. Marti, K. Krishnamourthy, and J. Madrenas, ‘‘SNAVA—A real-
time multi-FPGA multi-model spiking neural network simulation archi-
tecture,’’ Neural Netw., vol. 97, pp. 28–45, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608017302150

121918 VOLUME 8, 2020

http://dx.doi.org/10.1109/IJCNN.2015.7280424


R. Miedema et al.: flexHH: Flexible Hardware Library for HH-Based Neural Simulations

[12] K. Cheung, S. R. Schultz, and W. Luk, ‘‘NeuroFlow: A general purpose
spiking neural network simulation platform using customizable proces-
sors,’’ Frontiers Neurosci., vol. 9, p. 516, Jan. 2016. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnins.2015.00516

[13] J. R. De Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. I. De Zeeuw, ‘‘Climb-
ing fiber burst size and olivary sub-threshold oscillations in a network
setting,’’ PLoS Comput. Biol., vol. 8, no. 12, 2012, Art. no. e1002814.

[14] G. Smaragdos, C. Davies, C. Strydis, I. Sourdis, C. Ciobanu,
O. Mencer, and C. I. De Zeeuw, ‘‘Real-time olivary neuron simulations
on dataflow computing machines,’’ in Proc. Int. Supercomputing Conf.
Cham, Switzerland: Springer, 2014, pp. 487–497.

[15] O. Pell and V. Averbukh, ‘‘Maximum performance computing with
dataflow engines,’’Comput. Sci. Eng., vol. 14, no. 4, pp. 98–103, Jul. 2012.

[16] T. Becker, P. Burovskiy, A. M. Nestorov, H. Palikareva, E. Reggiani, and
G. Gaydadjiev, ‘‘From exaflop to exaflow,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 404–409.

[17] N. Schweighofer, K. Doya, and M. Kawato, ‘‘Electrophysiological proper-
ties of inferior olive neurons: A compartmental model,’’ J. Neurophysiol.,
vol. 82, no. 2, pp. 804–817, Aug. 1999.

[18] N. Schweighofer, K. Doya, H. Fukai, J. V. Chiron, T. Furukawa, and
M. Kawato, ‘‘Chaos may enhance information transmission in the infe-
rior olive,’’ Proc. Nat. Acad. Sci. USA, vol. 101, no. 13, pp. 4655–4660,
Mar. 2004.

[19] P. Grigoras, P. Burovskiy, J. Arram, X. Niu, K. Cheung, J. Xie, and
W. Luk, ‘‘Dfesnippets: An open-source library for dataflow acceler-
ation on FPGAs,’’ in Applied Reconfigurable Computing, S. Wong,
A. C. Beck, K. Bertels, and L. Carro, Eds. Cham, Switzerland: Springer,
2017, pp. 299–310.

[20] J. R. De Gruijl, T. M. Hoogland, and C. I. De Zeeuw, ‘‘Behavioral cor-
relates of complex spike synchrony in cerebellar microzones,’’ J. Neu-
rosci., vol. 34, no. 27, pp. 8937–8947, Jul. 2014. [Online]. Available:
http://www.jneurosci.org/content/34/27/8937

[21] E. M. Izhikevich, Dynamical Systems in Neuroscience. Cambridge, MA,
USA: MIT Press, 2007.

[22] R. Miedema, ‘‘Flexhh: A flexible hardware library for hodgkin-huxley-
based neural simulations,’’ M.S. thesis, Comput. Eng., Delft Univ. Tech-
nol., Delft, The Netherlands, 2019.

[23] M. Beuler, A. Krum, W. Bonath, and H. Hillmer, ‘‘Nepteron processor for
real-time computation of conductance-based neuronal networks,’’ in Proc.
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2017, pp. 78–85.

[24] A. Zjajo, J. Hofmann, G. J. Christiaanse, M. van Eijk, G. Smaragdos,
C. Strydis, A. de Graaf, C. Galuzzi, and R. van Leuken, ‘‘A real-time
reconfigurable multichip architecture for large-scale biophysically accu-
rate neuron simulation,’’ IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2,
pp. 326–337, Apr. 2018.

[25] G. Smaragdos, S. Isaza, M. F. van Eijk, I. Sourdis, and C. Strydis, ‘‘FPGA-
based biophysically-meaningful modeling of olivocerebellar neurons,’’ in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, NewYork, NY,
USA, 2014, pp. 89–98, doi: 10.1145/2554688.2554790.

RENE MIEDEMA was born in Spijkenisse, The
Netherlands, in 1992. He received the B.Sc. degree
in electrical engineering and the M.Sc. degree in
computer engineering from the Delft University
of Technology, in 2015 and 2019, respectively.
He is currently a Research Analyst with the Neuro-
science Department, Erasmus Medical Center. His
research interests include high-performance com-
puting, numerical methods, and brain modeling.

GEORGIOS SMARAGDOS (Member, IEEE)
received the Diploma (Engineering) degree in
electronics and computer engineering from the
Technical University of Crete (TUC), Chania, and
the M.Sc. degree in computer engineering from
the Delft University of Technology (TUD), The
Netherlands, in July 2012. He is currently pursuing
the Ph.D. degree with the Neuroscience Depart-
ment (Brain Modeling HPC Acceleration), Eras-
mus Medical Center, under the supervision of C. I.

de Zeeuw and the Co-Supervision of C. Strydis and Y. Sourdis.

MARIO NEGRELLO received the Ph.D. degree
(summa cum laude) in cognitive science from the
University of Osnabrück, Germany. He is cur-
rently an Assistant Professor in computational
neuroscience with the Erasmus Medical Center,
Rotterdam. He combines empirical research and
computational models to uncover the principles
of unsupervised motor learning from biological
neural networks. He has published in the fields of
machine learning, cognitive robotics, artificial life,

evolutionary robotics, neuroethology and neuroscience, and a monograph,
published by Springer, U.S., in the Series Cognitive and Neural systems
entitled Invariants of Behavior, in 2012.

ZAID AL-ARS (Member, IEEE) held various roles
with a number of tech industry heavyweights, such
as Siemens and IBM. He is currently an Associate
Professor with the Quantum and Computer Engi-
neering Department, Delft University of Technol-
ogy, where he leads the Accelerated Big Data Sys-
tems Group. His work focuses on developing com-
puting infrastructures for efficient processing of
big data analytics applications. He is a Co-Founder
of a couple of big data companies specialized in

high performance analytics solutions andAI. He is also on the advisory board
of a number of high-tech start-ups. He has published more than 100 peer-
reviewed publications. He holds two patents.

MATTHIAS MÖLLER received the Diploma and
Ph.D. degrees in mathematics from the Faculty of
Mathematics, TU Dortmund University, Germany,
in 2003 and 2008, respectively. He is currently
an Assistant Professor with the Numerical Anal-
ysis Group, Department of Applied Mathematics,
Delft University of Technology, The Netherlands.
His research interest includes numerical methods
for solving partial differential equations and their
efficient implementation on heterogeneous high-

performance computing platforms, including GPUs and FPGAs. He is also
active in the emerging field of quantum-accelerated numerical linear algebra
applications.

CHRISTOS STRYDIS (Senior Member, IEEE)
received the M.Sc. (magna cum laude) and the
Ph.D. degrees in computer engineering from the
Delft University of Technology. He is currently
a tenured Assistant Professor in computer engi-
neering and the Head of the NeuroComputing
Laboratory, Neuroscience Department, Erasmus
Medical Center, The Netherlands. He has pub-
lished work in well-known international confer-
ences and journals. He has delivered invited talks

in various venues. His current research interests include brain simulations,
high-performance computing, low-power embedded (implantable) systems,
and functional ultrasound imaging.

VOLUME 8, 2020 121919

http://dx.doi.org/10.1145/2554688.2554790

