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Rodents engage in active touch using their facial whiskers: they explore their environment

by making rapid back-and-forth movements. The fast nature of whisker movements,

during which whiskers often cross each other, makes it notoriously difficult to track

individual whiskers of the intact whisker field. We present here a novel algorithm,

WhiskEras, for tracking of whisker movements in high-speed videos of untrimmed mice,

without requiring labeled data. WhiskEras consists of a pipeline of image-processing

steps: first, the points that form the whisker centerlines are detected with sub-pixel

accuracy. Then, these points are clustered in order to distinguish individual whiskers.

Subsequently, the whiskers are parameterized so that a single whisker can be described

by four parameters. The last step consists of tracking individual whiskers over time.

We describe that WhiskEras performs better than other whisker-tracking algorithms on

several metrics. On our four video segments, WhiskEras detected more whiskers per

frame than the Biotact Whisker Tracking Tool. The signal-to-noise ratio of the output

of WhiskEras was higher than that of Janelia Whisk. As a result, the correlation between

reflexive whisker movements and cerebellar Purkinje cell activity appeared to be stronger

than previously found using other tracking algorithms. We conclude that WhiskEras

facilitates the study of sensorimotor integration by markedly improving the accuracy of

whisker tracking in untrimmed mice.

Keywords: sensorimotor integration, whiskers, object tracking, algorithm, cerebellum, Purkinje cell, mouse,

machine learning

1. INTRODUCTION

Most mammals, with humans being one of the very few exceptions, use whiskers to orient
themselves. Typically, whiskers are found on the cheek and around the mouth and assist with
feeding, but a number of species have evolved highly specialized functions of their whiskers (Ahl,
1986; Sokolov and Kulikov, 1987; Bosman et al., 2011). Herbivorous manatees, dwelling in
tropical waters, can orient themselves by detecting minute water flows around objects with their
whiskers (Sarko et al., 2007; Gaspard et al., 2013, 2017), while carnivorous pinnipeds use their
whiskers to detect vibrations in the water caused by prey fish tens of meters away (Dehnhardt et al.,
2001; Schulte-Pelkum et al., 2007). Also aerial squirrels have unusually large whiskers that they use
during gliding (Ahl, 1987), but the most extensively studied whisker system is that of small rodents
like mice and rats: behavioral as well as anatomical aspects of the rodent whisker system have made
it a popular model system to study neurodevelopment and sensorimotor integration as well as to an
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inspiration for robotics (Vincent, 1913; Welker, 1964; Woolsey
et al., 1975; Carvell and Simons, 1990; Fox, 1992; Svoboda et al.,
1997; Brecht and Sakmann, 2002; Brecht, 2007; Diamond et al.,
2008; Prescott et al., 2009; Bosman et al., 2011; Hartmann, 2011;
Petersen, 2019).

Mice, rats and some other small rodents and insectivores can
move their large facial whiskers rhythmically with frequencies
of 5–20 Hz, occasionally up to around 30 Hz, a speed that
is rather unique in mammals (Berg and Kleinfeld, 2003;
Knutsen et al., 2006; Munz et al., 2010; Rahmati et al., 2014).
In doing so, they can actively explore their environment
and establish the shapes and textures of the objects around
them (Rodgers et al., 2020). Neural interpretation of such
active touch is computationally demanding and consequently
a large part of the rodent brain is related to the whisker
system (Kleinfeld et al., 1999; Bosman et al., 2011). Whisker
input can be used to trigger associative learning with key
roles for the somatosensory and (pre)motor cortex, and the
cerebellum (Leal-Campanario et al., 2006; Troncoso et al.,
2007; O’Connor et al., 2010b; Rahmati et al., 2014; Gao et al.,
2018). From an experimental point of view, understanding the
behavioral context and thus (also) the whisker movements is
crucial for the interpretation of neural activity in relation to
the whisker system. Neural activity is context-dependent, and
sensory gating is attenuated during self-movement (Fanselow
and Nicolelis, 1999; Lee et al., 2008; Chakrabarti and Schwarz,
2018). Given the intrinsic complexity of the whisker system,
with a prominent somatotopic representation of individual
whiskers in the trigeminal nuclei, the thalamus and the primary
somatosensory cortex (Woolsey et al., 1975; Bosman et al., 2011),
as well as the ability of mice to move whiskers individually (Dörfl,
1985; Simony et al., 2010), tracking of individual whiskers
is desirable.

The fast speed of the many whiskers organized in different
rows severely complicates accurate tracking of their movement.
In the past, several approaches have been taken to address this
problem. Many of these involve the clipping of all but one or a
few whiskers (Bermejo et al., 2002; Knutsen et al., 2005, 2008;
Voigts et al., 2008; O’Connor et al., 2010a; Clack et al., 2012;
Dorschner et al., 2016; Nashaat et al., 2017; Sehara et al., 2019;
Petersen et al., 2020). Although animals are astonishingly good at
obtaining sensory input from a single spared whisker (O’Connor
et al., 2010a), whisker clipping is a rather unsatisfactory method
from a behavioral point of view (Pluta et al., 2017). Alternatively,
whiskers can be labeled with small markers (Herfst and Brecht,
2008; Roy et al., 2011). However, even small markers are heavy
in comparison to the mass of the whisker itself and therefore
affect its movement. As far as we are aware, only the BIOTACT
Whisker Tracking Tool (BWTT) aims at tracking unclipped and
unlabeled whiskers (Perkon et al., 2011). BWTT is, however,
not designed to follow the trajectories of individual whiskers
within the whisker field. To overcome this limitation, we have
previously introduced post-hoc processing of data generated
with BWTT (Rahmati et al., 2014; Ma et al., 2017; Romano
et al., 2018). Post-hoc processing of the BWTT data in order to
follow individual whiskers turned out to be relatively inaccurate
in untrimmed mice. BWTT only determines the angle and

position of a whisker shaft on a specific distance from the snout,
which, given the fact that whiskers tend to fan out, is not
always a good approximation of the actual angle and position.
Furthermore, BWTT cannot detect whisker shafts with subpixel
accuracy, which complicates the distinction and tracking of
individual whiskers over time. These limitations motivated us
to develop a new whisker tracking tool, WhiskEras, which we
present here.

From a computational perspective, processing videos with
frequencies of 1,000 Hz in a reasonable amount of time is
challenging. Recently, we described that the computational
load of BWTT, which was implemented in MATLAB, grows
exponentially with the number of detected whisker points
(Ma et al., 2017). By porting the BWTT algorithm to
OpenMP, making use of parallelism, we managed to achieve
a speedup of 4,500x (Ma et al., 2017; Romano et al., 2020).
Similar to BWTT, on which it is partially based, WhiskEras
was implemented in MATLAB, but - in contrast to the
original version of BWTT - WhiskEras makes use of the
multicore CPU as well as a GPU to achieve reasonable
processing times.

In contrast to BWTT, but similar to Janelia Whisk (Clack
et al., 2012) and older trackers (Voigts et al., 2008), WhiskEras
takes the shape of the whiskers into account. WhiskEras
uses shape parameters to follow individual whiskers within
the unclipped, unlabeled whisker field. Although also deep
learning approaches provide promising results (Mathis et al.,
2018), we decided to use a computer-vision approach. We
show here in direct comparisons that under our recording
conditions, the accuracy ofWhiskEras outperforms that ofWhisk
and BWTT.

2. MATERIALS AND METHODS

2.1. Whisker Videos and Electrophysiology
For the development, testing and validation of WhiskEras, we
used high-speed videos of head-fixed mice that were made for
a previously published study (Romano et al., 2018). The details
of the recordings are described in that paper. Briefly, adult
C57Bl6/J mice received a magnetic pedestal with which they
could be head-fixed in the recording setup. After habituation,
video recordings of the whiskers of the right side of the
head were made (750–1,000 Hz full-frame rate, 480 × 512
pixels using a red LED panel as backlight). Extracellular single-
unit recordings of Purkinje cells in the ipsilateral cerebellar
lobules crus 1 and crus 2 were made using quartz-platinum
electrodes (Thomas Recording, Giessen, Germany), digitized
and stored at 24 kHz after 1–6,000 Hz filtering (RZ2 multi-
channel workstation, Tucker-Davis Technologies, Alachua, FL,
USA). All recordings were made in awake mice in the absence
of whisker clipping or marking. Every video originated from
another mouse.

2.2. Pixel-Level Processing
WhiskEras tracks whisker movement in three phases: pixel-level
processing, parameter fitting and tracking, as shown in Figure 1.
Each phase consists of multiple steps. The first phase, pixel-level
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FIGURE 1 | Overview of the three main processing steps of the WhiskEras algorithm and their sub-steps.

FIGURE 2 | Procedure to obtain the background and the snout silhoutte, which will both be subtracted from the frames. (A) Original frame taken from above.

(B) Extracted background. (C) Binarized image, still showing the whiskers. (D) Snout silhouette after removing the whiskers from the binarized image.
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processing, starts with background removal. This procedure was
retained from BWTT and described in detail in Perkon et al.
(2011). As the rest of WhiskEras, this procedure was written in
MATLAB (MathWorks, Natick, MA, USA). As whiskers appear
as dark objects on a bright background, the background was
identified as the brightest pixels detected in several frames taken
from across the video. The pixels were compared on a per-
pixel basis, and the lightest ones were retained. This process
filtered out everything except the whiskers and most of the fur,
as in Figure 2B. Subtracting the background from the original
frames made the whiskers appear bright on a dark background,
as shown in Figure 3A. The mouse silhouette and undetected fur
were removed by binarizing the image and performing a series
of image-processing operations: dilation (implemented with the
MATLAB function imdilate) and erosion (implemented with
the MATLAB function imerode) as shown in Figure 2D.

The subsequent steps of BWTT, noise-filtering and detection,
were not retained. Instead, WhiskEras considers whiskers as
curvilinear structures as their width is negligible compared
to their length. Therefore, extracting the position of the
centerline of the whiskers is an abstraction that captures the
essentials of whisker position and shape. Curvilinear structures
appear in a wide range of images - not only whiskers, but
also roads on air photos or endoplasmic reticular networks
on electron microscopic images of cells. Steger’s curvilinear-
structure algorithm (Steger, 1998) solves the problem of detecting
such structures and finding their centerlines in an elegant
analytical way, by viewing the image as a height map, in which
the color value represents the height. This principle is shown
in Figure 3A. The whiskers can be considered “ridges” in a
dark “landscape.” The cross section of such a ridge can be
approximated by a parabola, which can be approached by a
second-degree Taylor polynomial. The vertex of the parabola
can then simply be found analytically by calculating the position
where its derivative equals zero.

The algorithm, explained in detail in Steger (1998), can be
performed on every pixel independently, which allows a very high
degree of parallelism. Our own implementation of this algorithm
combines MATLAB’s gpuArray and arrayfun functions,
allowing the algorithm to be performed on each pixel in parallel.

The centerline points form dotted line segments rather than
collections of pixels (Figure 3B), which makes it relatively
straightforward to cluster them into actual whisker segments.
It also allows for distinguishing crossing whiskers, as the upper
whisker often has a different intensity than the lower whisker. In
that case, the curvilinear structure detection algorithm manages
to detect the centerline of the upper whisker in an uninterrupted
fashion, whereas the lower whisker will be detected as an
interrupted line segment. After all, the upper whisker will have
a continuous centerline, whereas the centerline of the lower
whisker is interrupted (Figure 4). Furthermore, the algorithm
consists of a convolution step to find five partial derivatives of the
frame, and a pixel-based calculation step in which the position
of the line is determined. Both operations can be executed
for each pixel in parallel, which reduces the execution time
per frame. Figure 3B shows an image in which the centerline
points of a set of whiskers are detected. Even though whiskers

are no thicker than a few pixels, the centerline points form a
rather smooth curve, as a result of the sub-pixel precision. Since
the color and thickness of whiskers do not vary considerably,
these centerline points of the whiskers, with their direction and
intrapixel position, will serve as input to the parameterization
step, whereas the rest of the information can be discarded.

2.3. Parameter Fitting
The parameter fitting process consists of two consecutive
steps. First, centerline points are clustered so that each cluster
corresponds to one whisker. Next, for each cluster, a curve is
constructed that describes the shape and position of this whisker
with a few parameters. These parameters should satisfy the
compactness criterion: whiskers that are very similar should have
similar parameter values, whereas whiskers that are very different
should be very different in their parameter values (Duin and
Tax, 2005). This two-step approach was chosen, as fitting curves
directly to a large set of points is too computationally intensive:
it is an NP-hard problem (non-deterministic polynomial-time)
which is complicated even further by the fact that the number of
whiskers on the frame is not known beforehand. After clustering,
the problem of finding the best fitting curve per whisker is a
regression problem, which can be solved by least-squares fitting.
Moreover, after clustering, the whiskers can be processed in
parallel, which reduces the processing time.

2.3.1. Clustering
WhiskEras contains two different algorithms for clustering.
The method of choice depends on the properties of the video
recording. WhiskEras offers the user the option to choose one of
the two methods. The first algorithm is DBSCAN (Ester et al.,
1996). With this algorithm, the decision whether two points
are part of the same cluster is taken based on the density of
points in the region between the two points: if the two points
are separated by a region with a high density, the points are
likely to be part of the same cluster, whereas a region with sparse
density suggests that the points belong to different clusters. This
makes density-based clustering very suitable for the detection
of long or irregularly shaped clusters, such as whiskers. If the
distance between two points is smaller than a preconfigured
parameter, they are part of the same cluster. A disadvantage of
this approach is that it does not take into account that each
centerline point has, at most, two neighbors. It is possible to
build into DBSCAN a restriction on clustering to the two closest
neighbors only, but this fails when the nearest neighbors are both
on the same side. This regularly happens as each pixel contains at
most one centerline point, which can potentially show up at any
sub-pixel location.

Alternatively, a local clustering algorithm that builds upon the
detection algorithm can be used (Steger, 1998). The algorithm
makes use of the fact that the same information that is used
to detect the sub-pixel position of the whisker point, can be
used to detect the direction of the line at that particular point.
If the local direction of the whisker is known, it is possible
to search in that direction to find the next centerline point.
In Steger’s original clustering algorithm, each centerline point
searches for one neighbor in its adjacent pixels, depending on the
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FIGURE 3 | (A) A whisker image as height map after removal of background and silhouette. The whiskers appear as bright “ridges” in a dark “landscape.” (B) Whisker

centerline points, obtained from the height map in (A) with the centerline detection algorithm. The inset shows that, even though the whiskers are not wider than a few

pixels, the extracted centerline is rather smooth.

local direction. We expanded this, having each point to search
for two neighbors in opposite directions, not only in immediately
adjacent pixels, but also one pixel further. This allows for correct
clustering, even if there is a gap because of a missing point.
Centerline points are only clustered if they mutually classify each
other as neighbors. This eliminates the problem of the clustering
of more than two neighbors in DBSCAN. However, this system
is heavily dependent on the accuracy of the determined local
direction of the line - an error in either of the two neighbor points
can inhibit proper clustering. The accuracy is highly dependent
on the quality of the recording, and in our experience, Steger’s
clustering algorithm works best in cases where the detected
centerline is smooth and uninterrupted, whereas DBSCANworks
better in cases where the centerline is interrupted or not smooth
(which occurs in lower-resolution recordings). Therefore, we
decided to include both algorithms in the system, so that the user
can decide on a per-case basis.

As illustrated in Figure 4C, after the first clustering step, the
number of clusters can still be larger than the number of whiskers.
This can happen because of whisker occlusions, or the failure
to recognize whisker centerline points during the detection step.
Therefore, it is necessary to reduce the number of clusters by
merging those that are part of the same whisker together, in such
a way that every cluster represents a single whisker.

Since initial clusters were already created in the previous step,
we can determine their direction. After all, clusters that contain
a certain number of points form line segments, and clusters that
are part of the same whisker are usually more of less collinear.
This collinearity can be used to decide which clusters belong
to the same whisker. Therefore, we designed a cluster-stitching
algorithm, which can be described as follows: a section of a
certain length from the tip of a cluster a is approximated by a line

l. This line is extended upwards, and all the clusters of which the
bottom points come close to this line are marked. The cluster b of
which the bottom point comes closest to the tip of the cluster a,
can be merged with cluster a. This procedure can be repeated for
every cluster long enough to be linearized. In this way, clusters
that are part of the same whisker are stitched together. The
procedure is illustrated in Figure 4. As can be derived from
the colors in Figure 4D, every cluster now corresponds to one
whisker. The algorithm also created a correct clustering of the
crossing long whiskers.

A separate problem is the case in which whiskers fully overlap
at their bottom, but diverge at their tips. In such cases, the
centerline of the lower whisker appears to be disconnected
from the snout after detection. We resolved this by copying the
detected centerline points of the upper (visible) whisker and
adding them to the cluster of the lower whisker, thereby making
sure that both whiskers are connected to the snout and can be
parameterized properly.

2.3.2. Parameter Fitting
A good way to perform the second step is by using parameters for
characteristics that are similar for similar whiskers, and dissimilar
for dissimilar whiskers. These characteristics are the angle to the
snout, position, shape, and length. The angle can be quantified
by drawing a line along the snout and measuring the angle θ

relative to the line and position ρ on the line, as shown in
Figure 5. The shape of the line can be approximated by a second
degree polynomial, and therefore by one parameter b, where the
distance d between a straight line and the actual whisker at a
distance x from the snout is defined as d = bx2, as shown in
Figure 5A. The length of the whisker can be approximated by
measuring the distance between the bottom and the tip of the
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FIGURE 4 | (A) The two red clusters of centerline points are part of the same whisker, and will be stitched by the algorithm. (B) Visualization of the stitching algorithm.

The red line through the selected cluster (in red) shows the direction of the whisker; the bottom points of other clusters are marked by circles. The red circle signifies a

bottom point that is too far from the line; therefore, that cluster should not be stitched to the selected cluster. The yellow circles signify bottom points of clusters that

could be stitched to the selected cluster. However, the bottom point marked by a green circle is the best option. Therefore, the clusters are stitched together as was

shown in (A). By iterating over all the clusters, those that are part of that whisker will be stitched together by the algorithm. (C) Different colors signify different clusters

of centerline points. Whisker clusters before applying the stitching steps, but after DBSCAN clustering. (D) Clusters after the stitching steps. Even the points of the

long, crossing whiskers in the middle of the image have been clustered correctly, as the clusters were collinear.

whisker, and defining this as length L. In this way, it can be said
that the whisker is a function of the parameter tuple {ρ, θ , b, L}.
These parameters can be fit to each cluster by using theMATLAB
function nlinfit, in order to obtain an accurate representation
of the whisker.

2.4. Tracking and Recognition
WhiskEras combines tracking and recognition, and is loosely
based on the “Tracking-Learning-Detection” (TLD) algorithm
described in Kalal et al. (2012). The main idea behind our
algorithm is that, most of the time, tracking whiskers is relatively
straightforward: the positions and shapes of whiskers usually
only change slightly between frames; if the parameterization was
done correctly, whiskers on frame n + 1 can be matched to

those on frame n. Nevertheless, when whiskers move fast, cross,
and hide, it is certain that the tracker, at some point, will make
a mistake. In mice with an intact set of whiskers, it is almost
impossible to recover from such a mistake. In such cases, it
is useful to have a recognizer that can recognize a particular
whisker based on its appearance, rather than its current position.
In WhiskEras, the recognizer uses the data from the tracker to
learn to recognize a whisker. In this way, WhiskEras can recover
from tracking mistakes.

Accumulation of tracking and detection errors in the training
data could lead to progressive deterioration of the training data
and therefore of the recognitionmechanism. This is countered by
introducing a set of two auxiliary algorithms aimed at checking
the work of the recognizer and tracker by “experts” (Kalal
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FIGURE 5 | (A) Construction of the four parameters that are used to define a whisker. d is the distance between a line with its origin in ρ and angle θ , and the actual

whisker, at point x on the line. Assuming that a second degree polynomial can be a good approximation of the actual shape of the whisker, d can be defined as

d = bx2. Length L is determined as the difference between the tip and the bottom of the whisker (here shown on a different whisker). (B) Schematic image showing

the relationship between position ρ and angle θ . When we assume that the position of pivot point R, and hence ρf and Lf , are fixed, we can prove that ρ and θ are

dependent variables. This can be used to recognize the same whisker in different frames.

et al., 2012): an “N-expert” that checks whether a recognition or
tracking decision is feasible, given constraints in the changes in
whisker position between two consecutive frames. In addition,
a “P-expert” considers whiskers that were parameterized but
not matched with any whisker in the previous frames, and
tries to match the “orphan whiskers” with whiskers from the
previous frames that could not be matched with any of those
in the current frame. Even though the experts themselves are
not immune to mistakes, if the number of mistakes in the
training data remains limited, progressive deterioration becomes
less likely. The effect of expert correction is illustrated in
Figure 6.

In WhiskEras, we implemented a version of TLD that starts
with a “bootstrapping” period with a variable length that can be
defined by the user. In this period, the classification is done by a
tracker that predicts the characteristics of a whisker on the next
frame by means of a Kalman filter, and matches predictions of
the tracked whiskers with detected whiskers on the new frame.
This will create an initial training set for the recognizer and
works best if the whiskers do not move too fast during the
bootstrapping period.

Recognition of whiskers in WhiskEras is essentially a
classification problem: we want to distribute all detected whiskers
in all frames into groups, each representing the same whisker. As
a recognizer, we chose a Support Vector Machine (SVM), “one-
vs-one” approach. As parameters, we use the length L, bending
parameter b, position ρ and the cotangent to of the angle θ . We
also use the difference between the mean of ρ and cot θ of the
previous frame, and the value of θ and ρ of the current whisker
as values (we use the mean value from the previous frame, as the
mean value for the current frame can only be reliably calculated
when all the whiskers are identified). We use cot θ instead of θ

as this helps us to approximate the pivot point of the whisker (as

will be explained below). Although this point is not fixed, it is
relatively stable between consecutive frames and can therefore be
used as recognition point for whiskers over consecutive frames.

On the videos, the pivot point of the whisker is not visible, as it
is hidden by the silhouette of the mouse. Nevertheless, if the line
along the snout, which is used to determine ρ and θ , is chosen
well, and the whisker changes its angle over multiple frames, it is
possible to determine the pivot point with good accuracy, in the
following way:

Let ρ be the position on the line along the snout, and θ the
angle of the whisker relative to this line (Figure 5B). Everything
proximal to the line along the snout will not be detected, but it is
known that the whiskers we see are connected to the snout. It will
be assumed that the part of the whisker close to the snout is more
or less linear (which is usually the case; whiskers are more bent at
the top since they are tapered, Williams and Kramer, 2010). We
can construct a line perpendicular to the snout that crosses the
pivot point R. Let ρf be the point where this line intersects with
the line along the snout, and Lf be the distance between R and
ρf . This will create a right triangle ρf ρR. Because we assume a
linear whisker situation near and below the line along the snout,
the angle 6 ρf ρR = θ .

According to trigonometry, cot θ =
ρ−ρf

Lf
. This leads to

the equation:

ρ = Lf cot θ + ρf (1)

We assumed R to be a fixed point, therefore Lf and ρf are
constants. Equation 1 therefore represents a straight line Q of the
form y = ax + b. If we detect ρ and θ for the same whisker in
different positions, it is possible to estimate Q by plotting cot θ
against ρ. With a sufficient amount of training data, an SVM can
use the value of cot θ relative to ρf for classification.
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FIGURE 6 | (A) Tracking of a whisker fragment with N- and P-experts turned off. The red and yellow tracks contain jumps of more than 10 degrees in whisker angle

between two frames—i.e., within 1 ms, since the video was recorded with 1,000 Hz. This is physically impossible, so this is the result of incorrect recognition. (B)

Tracking results of the same fragment, with the experts turned on. Incorrect recognition of the blue and yellow traces is detected by the N-expert, after which the

P-expert assigns whiskers to those tracks that are most likely correct. The corrected tracks are added to the training data for the recognizer, aiding it in preventing

such mistakes in the rest of the fragment.

The tracker follows the whiskers that were detected on
the first frame. After the bootstrapping period, the classifier
is used first to recognize whiskers in a frame. The N-expert
determines the difference in θ and ρ between frame n and
n − 1 for each whisker, and determines whether it is plausible
that a whisker changed its position by that amount in this
short time interval. If a whisker position in frame n is too
dissimilar from its counterpart in frame n − 1 (i.e., its position
(ρ, θ) changed more than is possible between two frames,
based on a threshold empirically determined and predefined
by the user), the N-expert marks the detection in n as a
false positive and removes it from the training data and
the output.

The tracker now takes the role of P-expert: it tracks
whiskers from frame n − 1 to frame n. If it assigns an
identity that was not used by the classifier to a whisker
that was not classified by the classifier, this is marked as
a false negative. The whisker is added to the training data
and the output. If a whisker remains undetected by both
the classifier and the P-expert, its position is estimated. The
P-expert can use this estimation to redetect the whisker
in later frames, but the estimation will not be part of
the output.

The classifier consists of (N)(N−1)
2 SVMs (with N the number

of whiskers that is being tracked, i.e., the whiskers that were
visible on the first frame) that are retrained in parallel every s
frames, with s being another parameter that can be configured by
the user. The training data consists of all classified whiskers from
frames n−W to n, withW being the window size, which can also
be configured by the user. The MATLAB function fitcsvm is

used to train the SVMs. The parameters sets are standardized to
a mean of 0 and a standard deviation of 1.

2.5. Comparison With Other Trackers
We compared our tracker with two widely used trackers: BWTT
and Janelia Whisk, by processing four video fragments, each
100,000 frames in length. We used Ma’s accelerated version of
BWTT (Ma et al., 2017), and version v1.1.0d of Janelia Whisk,
downloaded from their Wiki (Clack, 2011a).

Even though all three tools are aimed at tracking whiskers,
their purposes are slightly different. BWTT has been designed
to produce the average angle and position of the whiskers. For
each of the frames, it tries to detect as many whiskers as possible,
and calculates their average angle. Individual whiskers are not
tracked over time. False positives are avoided by only detecting
whisker shafts in a narrow band around the snout in which
there are only whiskers, but no fur hairs or other objects. Janelia
Whisk has been designed to detect and track manually selected
whiskers. There is not much protection against false positives,
and in videos, artifacts were often falsely detected as whiskers
if the “trace all curves” feature is used. Because it is possible to
manually deselect false positives, this is not much of a problem
for the user. However, we have to take the differences between
the different tools into account when comparing their quality.

We designed four metrics to compare the different trackers.
The first metric is the number of detected whiskers per frame.
Here, we will only compare WhiskEras to BWTT, as Janelia
Whisk detects (by design) more false positives than the other two
trackers, which makes this metric not usable for that tracker. The
second metric is the detection ratio per whisker, i.e., the number
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TABLE 1 | Specifications of the videos that were used.

Label Recording date Resolution (pixels) Frequency View of mouse Camera

(pixels) (frames/s)

A 08-06-2017 480 × 512 1,000 Right side of snout Basler A504k

B 09-09-2019 480 × 512 750 Full snout Basler acA640-750um

C 09-09-2019 480 × 512 750 Full snout Basler acA640-750um

D 10-09-2019 480 × 512 750 Full snout Basler acA640-750um

of frames in which the whisker was recognized as a percentage
of the total number of frames. Here, only WhiskEras and Janelia
Whisk will be compared, as BWTT is not capable of tracking
individual whiskers in untrimmed mice. The third metric is the
Signal-to-Noise ratio of the detected whisker traces, which gives
an indication of the precision of angle detection. The Signal-to-
Noise ratio is the ratio of the power of a signal to the power of
the noise. Again, we will only compare WhiskEras and Janelia
Whisk, as BWTT does not track individual whiskers. Lastly, we
will assess the tracking quality of the two trackers that are capable
of tracking individual whiskers.

We first processed the fragment using BWTT. Then, we
processed the fragments with WhiskEras. Finally, we processed
the videos with Whisk. In Whisk’s GUI, we selected the same
whiskers for tracking as in WhiskEras (when possible), the
criterion being their length and visibility on the first frame.
The parameters of WhiskEras, such as the clustering method
used, were determined and adjusted based on trials runs on
the first few frames. For Whisk, we followed the steps listed in
the Automated Whisker Tracking tutorial, which can be found
online (Clack, 2011b). However, it does mean that the number
of automatically detected whiskers per frame is not a good
metric to assess the quality of the tracker. WhiskEras attempts
to detect all the whiskers. It does not yet support manual whisker
selection (although this can be implemented in a later version),
and distinguishes fur and whiskers based on their length. Static
artifacts are filtered out by the background removal algorithm.

3. RESULTS

Assessing the quality of the output of WhiskEras, or any other
whisker tracker, is not a trivial task as there is no “perfect” output
available for comparison. The fast movements, occlusions and
crosses of whiskers make individual whiskers also difficult to
recognize over time for a human observer. We therefore chose to
compare the output of WhiskEras with those of two established
whisker tracking. To this end, we used four video segments with a
length of 100,000 frames each (Table 1, first frames of each video
shown in Figure 7).

3.1. Video Fragments
For this analysis, focused on the whiskers on the right of
the snout. The fragments each have their own challenges
when it comes to recording: fragment A features a prominent
non-mystacial whisker; fragments B and C show a relatively
large number of whiskers. Fragment D shows fewer whiskers,

but features a non-mystacial whisker, which crosses the
mystacial whiskers.

3.2. Detected Whiskers per Frame
A simple metric to describe the reliability of whisker tracking is
the average number of tracked whiskers per frame. As mentioned
in section 2.5, we only compare WhiskEras to BWTT for
this metric.

BWTT simply attempts to detect all the whiskers in a narrow
band around the snout. WhiskEras detects all whiskers, but gives
the option to exclude some based on length. Furthermore, the
silhouette removal algorithm can be adjusted to remove more of
the fur—this reduces the chance of fur incorrectly being labeled
as whiskers, but it increases the chance that shorter whiskers are
missed. For this metric, we set the minimum length to a number
that prevents fur from being misclassified as a whisker.

The results are shown in the histograms in Figure 8. It
becomes immediately clear that on this metric, WhiskEras
outperformed BWTT: it consistently detected more whiskers.
Whereas BWTT only detected short whisker shafts at a specific
distance from the snout, WhiskEras tried to find the whiskers
everywhere on the desired side of the snout, thus detecting
shorter whiskers and whiskers that are partially occluded. On
average over all four videos, WhiskEras detected 90.7% more
whiskers per frame than BWTT.

3.3. Detection Ratio
The detection ratio is determined for individual whiskers: it is
the percentage of frames in which the particular whisker was
detected. Even though this metric can give an indication as to
how well the tracker was able to follow whiskers over time, it
does have the risk of false positives: a tracker can label a particular
whisker as “detected,” whereas in reality, it has detected a different
whisker or an artifact.

For this metric, the tracker needs to be able to track individual
whiskers over longer periods of time, so we cannot include
BWTT into this comparison. We tracked the same whiskers in
WhiskEras and Whisk. For Whisk, there was the limitation that
the software had trouble processing our very long sequences of
frames. Therefore, we cut up each of our videos in five segments
of 20,000 frames, and processed them as if they were separate
videos. Since the first frame of each segment is used to select
whiskers for Whisk to track, and not all whiskers are visible all
the time, we could not track all whiskers in all the segments with
Whisk. In such cases, we only considered the segments in which
the whiskers could be tracked by both Whisk and WhiskEras.
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FIGURE 7 | First frames of each of the segments that were used in testing. The letters (A–D) of the subfigures correspond to the video labels. Segment A shows only

the right side of the mouse. The other segments show both sides, but we only tracked the subjective right side (i.e., the left side on the image).

The results for every tracked whisker in every video are
summarized in Table 2. It can be seen that Janelia Whisk, in
general, scored higher on this metric than WhiskEras. This is
especially the case for video A, for which Janelia Whisk reports
detection ratios of more than 99% for every tracked whisker. For
WhiskEras, the detection ratios in the best whiskers are similarly

high, but it found some other whiskers more difficult to track.
The only video where WhiskEras has a higher average detection
ratio than Janelia Whisk, is video D.

The lower detection ratios for WhiskEras could be due to
the fact that our tracker is rather strict when it comes to false
positives: the “N-expert” assesses whether a particular match is
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FIGURE 8 | Histograms of detected whiskers per frame for each of the videos. The letters of the subfigures correspond to the video labels. In each video, WhiskEras

detected on average more whiskers per frame (all p < 0.001, paired t tests). The averages and standard deviations of the number of detected whiskers per frame for

each video are as follows: (A) BWTT: µ = 7.89, σ = 0.81, WhiskEras: µ = 10.45, σ = 1.05, (B) µ = 8.81, σ = 1.44 / µ = 12.22, σ = 1.15, (C) µ = 7.18, σ = 1.43 /

µ = 11.54, σ = 1.61, (D) µ = 1.92, σ = 0.64 / µ = 6.34, σ = 1.10.

feasible, and if it is not, the match is marked invalid. For the
WhiskEras recognizer, it is important that the training data be
kept as clean as possible. Janelia Whisk, on the other hand, tries
to find every whisker in every frame, which leads to very high
detection ratios for most whiskers. However, this also comes with
a higher risk of false positives.

3.4. Signal-to-Noise Ratio
The signal-to-noise ratio (SNR) can be computed as the ratio
of the summed squared magnitude of the signal and that of the
noise. Since the frequencies of our videos (750 and 1,000 Hz)
are much higher than the frequency at which whisking occurs
(up to around 30 Hz), we can visualize the actual movement of
the whiskers by smoothing the measured signal. The variations
in angle that occur at a higher frequency can be considered

noise which originates from the tracker. To smooth the signal,
we used MATLAB’s smoothdata function. For smoothing, we
chose the Savitzky-Golay filter, which smooths using a quadratic
polynomial which is fitted over each window (MATLAB, 2020).
We chose a window size of 10 frames. The noise is then
approximated by subtracting the smoothed signal from the
original measurements, after which we used MATLAB’s snr
function. The higher the SNR value, the less noisy the signal
is. Since BWTT does not track individual whiskers, we only
compared Whisk and WhiskEras.

The SNR values are determined for each whisker in each
video, and are shown in Figure 9. Here,WhiskEras outperformed
Janelia Whisk for every whisker in every video. In concrete
terms, this means that WhiskEras’s traces of the angle of single
whiskers were more stable than those produced by Whisk. This
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TABLE 2 | Detection rate per whisker for Janelia Whisk and WhiskEras.

Whisker no. Video A (%) Video B (%) Video C (%) Video D (%)

1 99.86/91.67 100.0/61.45 95.59/99.78 93.71/94.47

2 99.93/99.92 100.0/87.56* 97.11/99.15 98.83/92.53

3 99.93/99.64 100.0/75.23 97.20/99.26 98.65/94.22

4 99.93/81.45 100.0/78.98* 97.20/99.58 80.08/95.75

5 99.93/69.81 99.99/64.10* 97.20/98.24

6 99.93/99.79 100.0/86.92 96.90/94.18

7 99.76/98.54 99.99/85.92 97.18/92.42

8 99.88/98.78 99.97/61.94 96.02/90.61

9 99.29/99.62 99.89/96.67 84.33/78.44

10 99.35/99.57

11 98.29/82.87

12 89.88/85.85

13 76.86/97.57

14 55.99/73.01

Avg. 99.83/93.25 94.30/81.26 95.41/94.63 92.82/94.24

The first number of each entry is the detection ratio of Janelia Whisk, the second one is the detection ratio of WhiskEras. The whiskers for which Janelia Whisk was unable to track the

whisker in one or more segments are marked with an asterisk.

makes it easier to track whiskers over time, as their trace is more
predictable and less noisy. On average over all the videos, the SNR
of WhiskEras was 64.3% higher than the SNR of Janelia Whisk.

3.5. Tracking Quality
Tracking quality can be measured by how well the tracker
is able to consistently label the newly detected whiskers
correctly. If the tracking and labeling are done well, individual
whiskers can be distinguished without much effort from
the user. Secondly, even when the tracker loses a whisker
(which is sometimes inevitable, given that whiskers can
be hidden on some frames), the tracker should be able
to recognize the whisker and label it correctly, as soon
as it reappears. We will use visual inspection here, to
compare WhiskEras to Janelia Whisk, as we have no gold-
standard “correct” traces. Again, because BWTT does not
track individual whiskers, we will not consider that tracker for
this metric.

A trace of whisking behavior from video B is shown in
Figure 10. This video is arguably the most challenging of the
four, as it features the highest number of tracked whiskers. The
segment consists of 1,000 frames, which corresponds to 1.33
s, in which the mouse whisks several times. More traces can
be found in the Supplementary Materials. Overall, we found
a strong congruence in the movement of all whiskers in line
with the musculature of the whisker pad (Dörfl, 1985; Simony
et al., 2010; Bosman et al., 2011; Haidarliu et al., 2015) and as
also found in previous studies (Wolfe et al., 2008; Azarfar et al.,
2018). The results are in line with our observations regarding
detection ratio and SNR. The traces produced by Janelia Whisk
appear very noisy, as the whisker angles vary a lot between
individual frames. In contrast, most of the traces in WhiskEras
appear very stable and easy to follow by eye. All the whiskers
benefit from WhiskEras improved tracking quality. The higher

performance of WhiskEras can be partly attributed to the higher
SNR in the WhiskEras traces (which make the individual traces
less noisy), but also to the fact that WhiskEras is able to find back
whiskers after they have been temporarily occluded (as shown in
Figure 10). This is very useful in videos of untrimmedmice, since
occlusions happens regularly there.

With WhiskEras, the upper two traces (with the largest angle
to the snout) are a bit more noisy than the other traces and
appear to switch color from time to time, which is a sign that
the tracker has difficulties distinguishing between the two. The
lower trace (with the smallest angle to the snout) disappears each
time the mouse whisks, but is redetected every single time. With
JaneliaWhisk, it is very difficult to distinguish between individual
whiskers, as traces appear to switch colors all the time.

If we look at the overall picture of a longer trace of 20,000
frames (as shown in the Supplementary Figure 2), it becomes
clear that WhiskEras can follow whiskers properly for thousands
of frames. However, the longer the segment, the higher the
chance thatWhiskEras will confuse some of the whiskers without
correcting; with video B, this happens after about 50,000 frames.
Even though most of the other whiskers are unaffected, this leads
to a decline in tracking quality as the training data becomes
contaminated with errors. This is one of the explanations for
the low detection ratio for some of the whiskers: when errors
accumulate in the training data, recognition becomes more
faulty. One solution to this could be to add an extra post-
processing step to the algorithm for detecting such mistakes and
corrected them, both in the actual trace and in the training data.
Since these errors are easy to spot by eye in the trace, such
an additional algorithm step is surely attainable, for instance
by a postprocessing algorithm that checks for sudden jumps in
whisker angle. As for tracking quality, WhiskEras had the best
performance on the tested videos, and can be run on sizable
video segments.

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 November 2020 | Volume 14 | Article 588445

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Betting et al. WhiskEras Whisker Tracking Algorithm

FIGURE 9 | Bar diagram of SNR (in dB) of each whisker for each video, as tracked by WhiskEras and Janelia Whisk. The letters of the subfigures correspond to the

video labels. A higher SNR signifies a higher precision of angle detection. WhiskEras consistently reports a higher SNR, with the following average SNR values over all

whiskes: (A) Janelia Whisk 35.26, WhiskEras: 52.46 (B) 21.40/47.70 (C) 33.30/47.54 (D) 31.60/45.15. The ranges of the SNR values for Janelia Whisk and WhiskEras

are as follows: (A) [31.54− 41.00]/[39.03− 65.02] (B) [16.32− 29.73]/[42.37− 54.40] (C) [28.00− 37.52]/[42.33− 52.17] (D) [30.01− 33.02]/[41.93− 50.33]. We

performed a paired t-test on each segment, with the following p-values: (A) p = 0.002, (B) p < 0.001, (C) p < 0.001, (D) p = 0.012.

4. DISCUSSION

We have developed a novel approach to track the movement of
mouse whiskers without the need to trim or mark them first.
In comparison to other, established whisker tracking algorithms,
WhiskEras produces results with relatively low noise even during
periods with rapid whisking.

Our algorithm consists of three main processing steps, which,
in turn, consist of several smaller steps. This procedure allows
us to effectively move from a raster image to an analytical
representation of the whiskers. Such a pipeline is, however,
vulnerable for errors in early steps that carry over in later steps.
WhiskEras counters this potential weakness by the combination
of tracking and recognition. While tracking aims to follow
individual whiskers over time, it is vulnerable to the loss of a

whisker in any given frame. Recognition, which is insensitive to
time, enables recovery after such a loss. Using the combination
of tracking and recognition, WhiskEras is able to reach a
high signal-to-noise ratio and can track individual whiskers
over tens of thousands of frames, even during periods of
rapid movement.

With the rapid progress in artificial neural networks and deep
learning, machine learning approaches to whisker tracking are
likely to evolve in the near future. Currently, DeepLabCut shows
promising results on behavioral tracking (Mathis et al., 2018;
Mathis and Mathis, 2020). However, mouse whisker tracking
remains a challenging task, whatever the approach, and people
currently rely on whisker clipping when using DeepLabCut for
whisker tracking (Dooley et al., 2020). We are convinced that
both techniques, computer vision as used by WhiskEras as well
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FIGURE 10 | Whisker traces for video B, frames 4,000–5,000, as tracked by WhiskEras and Janelia Whisk. The y-axis shows the whisker angle in radians. Different

colors denote differently labeled whiskers. It is clear that the WhiskEras trace is much clearer, and whiskers are more easy to follow and distinguish over time. There

are some instances where the whisker traces suddenly switch color (we marked some of these with red circles). There, it is likely that the tracker made a mistake, as

one would expect flowing lines. The green arrows show instances where a temporarily occluded whisker is found back by the recognizer when it reappears.

as deep learning, are powerful tools and it will be interesting
to see what the future brings; potentially even a merger of both
techniques where computer vision contributes to the generation
of labeled data required for DeepLabCut or similar programs.

A challenge for any movement tracker is to be flexible
and be able to reliably track whiskers filmed under different
conditions. We show here that WhiskEras can handle videos
that differed in frame rate, pixel count and zoom. This
flexibility is partly due to the large number of parameters
that can be adjusted to optimize tracking. Based on
empirical experience, standard values for each of these have
been obtained.

Currently, WhiskEras is optimized for recordings of head-
fixed, untrimmed, free-whiskingmice. The whiskers do not touch
objects, which allowed us to describe the shape of a whisker by
one single parameter, and the length by another. When objects
are included, the whisker will be deformed, its shape depending
on the place of the object and the length of the whisker. To
allow tracking in those circumstances, the set of abstraction
parameters needs to be expanded. Furthermore, the background-
removal algorithm relies on the background being static over
the course of the video; if other moving objects are added to
the background, these would need to be filtered out using an
additional preprocessing step.

Whisker movements are not restricted to a single plane and
several studies have focused on their 3D behavior (Bermejo

et al., 2002; Knutsen et al., 2008; Petersen et al., 2020).
As the mechanoreceptors at the base of the whiskers are
organized in a 3D fashion (Rice et al., 1986; Bosman et al.,
2011), a proper description of whisker movements in three
dimensions leads to a more accurate understanding of whisker
use. Potentially, adding a side view is also helpful to recognize
individual whiskers. However, adding the third dimension
to whisker tracking poses new problems and, currently,
whisker tracking in 3D depends either on labels attached
to whiskers (Bermejo et al., 2002) or on clipping of most
whiskers (Knutsen et al., 2008; Petersen et al., 2020). As
most of the movement takes place in one plane (Bermejo
et al., 2002; Knutsen et al., 2008; Petersen et al., 2020), we
chose to restrict WhiskEras to a 2D tracker at least for the
time being.

Tracking speed of WhiskEras is not optimal yet, but we have

previously shown with BWTT that an acceleration of a few

thousand times is realistic (Ma et al., 2017). Also, the multitude

of parameter settings that can be defined by the user makes
the software complex to use at this point. To address both

issues, work is already underway with porting of WhiskEras to
lower-level programming languages, which is guaranteed to lead
to high speedups.

With each tracking method having its pros and its cons,
in the end it is crucial to see whether WhiskEras provides
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FIGURE 11 | (A) Top: Exemplary trace of Purkinje cell activity recorded in an awake mouse with an extracellular electrode revealing complex spikes (upward

deflections indicated by the red dots) and simple spike (downward deflections). Below are the unfiltered average whisker angles as obtained using BWTT and

WhiskEras, respectively. (B) Matrix of correlation between the fluctuations in simple spike activity and the average whisker angle (processed using BWTT). On the top

left the average whisker angle and, on the bottom, the instantaneous simple spikes frequency around the moment of the air puff stimulation. The heat map represents

the Pearson correlation value (see scale bar). The green bars indicate the time of the air puff stimulation. (C) The same analysis based on the whisker angles as

obtained using the WhiskEras shows a higher level of correlation between whisker position and simple spike activity (p < 0.0001, paired t test between the Pearson

correlation coefficients on the diagonal of the matrices, using the 0–300 ms interval).

more useful data than previous methods. To this end, we
compared the output of WhiskEras to that of BWTT during
an experiment during which we simultaneously recorded the
activity of a cerebellar Purkinje cell. From this comparison,
it is clear that the WhiskEras data shows a higher level
of correlation between whisker position and spike activity
(Figure 11).

5. CONCLUSION

The algorithm was implemented in MATLAB and tested on
four video segments, each 100,000 frames long. We compared

WhiskEras to two current state-of-the-art whisker-tracking
applications, Janelia Whisk and BWTT. WhiskEras detects more

whiskers than BWTT: for our videos, on average 90.7% more.
WhiskEras tracks whiskers more accurately than Janelia Whisk:

for our videos, the SNR of WhiskEras is 64.3% higher than

the SNR of Janelia Whisk. For three of our four videos, Janelia

Whisk shows a higher average detection ratio for individual
whiskers than WhiskEras (averaged over all videos: 95.59% for

Janelia Whisk vs. 90.85% for WhiskEras), but the tracking-

quality metric showed that Whisk tends to show false positives
(as can be seen in Figure 10 and the Supplementary Material),
whereas WhiskEras rather reports a whisker as “undetected”
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when it cannot find it, in order to prevent the training data from
becoming corrupted.
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