19 research outputs found

    Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties

    Get PDF
    This study deals with the effect of zinc oxide (ZnO) star-like filler addition to the poly(vinylidene fluoride) (PVDF) matrix, and its effect on the structural and physical properties and consequences to the vibration sensing performance. Microwave-assisted synthesis in open vessel setup was optimized for the preparation of the star-like shape of ZnO crystalline particles. The crystalline and star-like structure was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX). Furthermore, the PVDF-based composites were prepared using a spin-coating technique from solution. An investigation of the transformation of the α crystalline phase to the β crystalline phase of the neat PVDF matrix and with various filler concentrations was performed using Fourier-Transform infrared (FTIR) spectroscopy, which shows an enhanced β-phase from 44.1% to 66.4% for neat PVDF and PVDF with 10 wt.% of particles, respectively. Differential scanning calorimetry (DSC) measurements and investigation showed enhanced crystallinity and melting enthalpy of the composite systems in comparison to neat PVDF, since ZnO star-like particles act as nucleating agents. The impact of the filler content on the physical properties, such as thermal and dynamic mechanical properties, which are critical for the intended applications, were investigated as well, and showed that fabricated composites exhibit enhanced thermal stability. Because of its dynamic mechanical properties, the composites can still be utilized as flexible sensors. Finally, the vibration sensing capability was systematically investigated, and it was shown that the addition of ZnO star-like filler enhanced the value of the thickness mode d33 piezoelectric constant from 16.3 pC/N to 29.2 pC/N for neat PVDF and PVDF with 10 wt.% of ZnO star-like particles. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Qatar National Research Fund (a member of the Qatar Foundation) [NPRP-6-282-2-119]; Czech Science FoundationGrant Agency of the Czech Republic [19-17457S]; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2020/003

    Toward High Power Generating Piezoelectric Nanofibers: Influence of Particle Size and Surface Electrostatic Interaction of Ce-Fe 2 O 3 and Ce-Co 3 O 4 on PVDF

    No full text
    Development of flexible piezoelectric nanogenerator (PENG) is a real challenge for the next-generation energy-harvesting applications. In this paper, we report highly flexible PENGs based on poly(vinylidene fluoride) (PVDF)/2 wt % Ce-Fe 2 O 3 and PVDF/2 wt % Ce-Co 3 O 4 nanocomposite fibers. The incorporation of magnetic Ce-Fe 2 O 3 and Ce-Co 3 O 4 greatly affects the structural properties of PVDF nanofibers, especially the polymeric ? and ? phases. In addition, the new composites enhanced the interfacial compatibility through electrostatic filler-polymer interactions. Both PVDF/Ce-Fe 2 O 3 and PVDF/Ce-Co 3 O 4 nanofibers-based PENGs, respectively, produce peak-to-peak output voltages of 20 and 15 V, respectively, with the corresponding output currents of 0.010 and 0.005 ?A/cm 2 under the force of 2.5 N. Enhanced output performance of the flexible nanogenerator is correlated with the electroactive polar phases generated within the PVDF, in the presence of the nanomaterials. The designed nanogenerators respond to human wrist movements with the highest output voltage of 0.15 V, for the PVDF/Ce-Fe 2 O 3 when subjected to hand movements. The overall piezoelectric power generation is correlated with the nanoparticle size and the existing filler-polymer and ion-dipole interactions.This publication was made possible by NPRP grant 6-282-2-119 from the Qatar National Research Fund (a member of Qatar Foundation)Scopu

    Flexible tri-layer piezoelectric nanogenerator based on PVDF-HFP/Ni-doped ZnO nanocomposites

    No full text
    In this work, we report Ni doped ZnO/poly(vinylidene fluoride-hexafluoropropylene) [PVDF-HFP] nanocomposites prepared by sandwiching and their structural, morphological, thermal, electrical and piezoelectric properties. The X-ray diffraction analysis and Fourier transform infrared spectral (FTIR) studies of the nanocomposite films confirm the enhanced ?-phase crystallization in the PVDF-HFP matrix due to the Ni-doped ZnO nanoparticles. Microscopic images of the prepared samples substantiate homogeneous dispersion of Ni-doped ZnO nanoparticles in the polymer matrix resulting in higher ?-phase nucleation. In addition, the nanocomposite shows a high dielectric constant and low dielectric loss, making it suitable for energy storage. The piezoelectric property increases with the filler concentration and a maximum generated output voltage of 1.2 V is achieved at 0.5 wt% Ni-doped ZnO.Scopu

    Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films

    No full text
    In this study, titania nanotubes (TNTs) were prepared by hydrothermal method with the aim to compare the properties of these one-dimensional tubular nanostructures' reinforced nanocomposites with the carbon and halloysite nanotubes' (CNTs and HNTs, respectively) reinforced nanocomposites. Low density polyethylene (LDPE) was used as the matrix material. The prepared nanocomposites were characterized and compared by means of their morphological, mechanical and thermal properties. SEM results showed enhanced interfacial interaction and better dispersion of TNTs and HNTs into LDPE with the incorporation of a MAPE compatibilizer, however, these interactions seem to be absent between CNTs and LDPE, and the CNTs remained agglomerated. Contact angle measurements revealed that CNT filled nanocomposites are more hydrophilic than HNT composites, and less than TNT composites. CNTs provided better tensile strength and Young's modulus than HNT and TNT nanocomposites, a 42% increase in tensile strength and Young's modulus is achieved compared to LDPE. Tear strength improvement was noticed in the TNT composites with a value of 35.4 N�mm? 1, compared to CNT composites with a value of 25.5 N�mm? 1�s? 1. All the prepared nanocomposites are more thermally stable than neat LDPE and the best improvement in thermal stability was observed for CNT reinforced nanocomposites. CNTs depicted the best improvement in tensile and thermal properties and the MAPE compatibilizer effectiveness regarding morphological, mechanical and thermal properties was only observed for TNT and HNT systems. 2017 Elsevier B.V.This work was made possible by NPRP grant # ( NPRP5-039-2-014 ) from the Qatar National Research Fund (a member of Qatar Foundation).Scopu

    Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes

    Get PDF
    This paper expresses a short review of research on the effects of graphene oxide (GO) as a nanocomposite element on polymer morphology and resulting property modifications including mechanical, barrier, and electrical conductivity. The effects on mechanical enhancement related to stress measurements in particular are a focus of this review. To first order, varying levels of aggregation of GO in different polymer matrices as a result of their weak inter-particle attractive interactions mainly affect the nanocomposite mechanical properties. The near surface dispersion of GO in polymer/GO nanocomposites can be investigated by studying the surface morphology of these nanocomposites using scanning probe microscopy such as atomic force microscope (AFM) and scanning electron microscope (SEM). In the bulk, GO dispersion can be studied by wide-angle X-ray scattering (WAXD) by analyzing the diffraction peaks corresponding to the undispersed GO fraction in the polymer matrix. In terms of an application, we review how the hydrophilicity of graphene oxide and its hydrogen bonding potential can enhance water flux of these nanocomposite materials in membrane applications. Likewise, the electrical conductivity of polymer films and bulk polymers can be advantageously enhanced via the percolative dispersion of GO nanoparticles, but this typically requires some additional chemical treatment of the GO nanoparticles to transform it to reduced GO. 2015 Production and hosting by Elsevier B.V.The authors acknowledge the support of the ACS-#52997-ND7 Petroleum Research Foundation. The authors extend their sincere appreciations to the Deanship of Scientific Research at King Saud University for its funding this Prolific Research group (PRG-1436-14) for this graphene oxide based membranes review study.Scopu

    Mechanical Properties of Gamma Irradiated TiO\u3csub\u3e2\u3c/sub\u3eNPs/MWCNTs/LDPE Hybrid Nanocomposites

    No full text
    This work investigates the impact of ϒ-irradiation on the mechanical properties of titanium oxide nanoparticles (TiO2NPs)/multi-walled carbon nanotubes (MWCNTs) hybrid low-density polyethylene (LDPE) nanocomposites. Hybrid LDPE nanocomposite films prepared using melt mixing technique were exposed to different doses of ϒ-radiation, ranging from 5 to 50 kGy. The tensile strength was diminished after TiO2NP or MWCNT addition, then increased with a further increase in the carbon nanotube (CNT) content. This behavior can be ascribed to stress transfer between the filler and the LDPE network. Besides, the tensile strength was enhanced after exposure to a dosage of 5 and 25 kGy of ϒ-radiation, then followed by a decline when exposed to 50 kGy, especially in the case of hybrid films due to the degradation and cross-linking of LDPE chains caused by ϒ-radiation. Because of the absorbance and antioxidant effects of CNTs, the CNT addition retarded the degradation of LDPE networks and decreased the catalytic activity of TiO2NPs to activate degradation upon radiation exposure. Therefore, the tensile strength was retained after exposure to a dose of 50 kGy of ϒ-radiation, especially in case of less TiO2NPs and more CNTs filled hybrid films. Furthermore, the % of the total elongation at break is decreased after incorporating MWCNTs. The % of the total elongation at break after exposure to a dosage of 25 kGy was reduced as a result of chain scissions and molecular weight decrease. Young’s modulus of the irradiated composites was lower than without irradiation. This effect was more significant for neat LDPE and TiO2NPs filled LDPE films, whereas MWCNTs had some stability effects on the nanocomposites

    Thermal Properties of TiO<sub>2</sub>NP/CNT/LDPE Hybrid Nanocomposite Films

    No full text
    This work aims to investigate the effect of hybrid filler concentration on the thermal stability of low-density polyethylene (LDPE) matrices. LDPE-based composite films were synthesized by melt mixing, followed by compression molding, to study the influence of titanium oxide nanoparticles (TONPs) and/or multi-walled carbon nanotubes (CNTs) on the thermal properties of LDPE matrices. Fourier transform infrared (FTIR) spectroscopy confirmed the slight increase in the band intensities after TONP addition and a remarkable surge after the incorporation of CNTs. The value of crystallization temperature (Tc) was not modified after incorporating TONPs, while an enhancement was observed after adding the hybrid fillers. The melting temperature (Tm) was not changed after introducing the CNTs and CNT/TONP hybrid fillers. The percentage crystallinity (Xc %) was increased by 4% and 6%, after incorporating 1 wt % and 3 wt % CNTs, respectively. The TONP incorporation did not modify the Xc %. Moreover, thermal gravimetric analysis (TGA) thermograms confirmed the increased thermal stability after introducing CNTs and hybrid fillers compared to TONP incorporation

    Studies on the Electrical Properties of Graphene Oxide-Reinforced Poly (4-Styrene Sulfonic Acid) and Polyvinyl Alcohol Blend Composites

    No full text
    In the present study, graphene oxide (GO)-reinforced poly (4-styrenesulfonic acid) (PSSA)/polyvinyl alcohol (PVA) blend composite films were prepared using colloidal blending technique at various concentrations of GO (0-3wt.%). The morphological investigations of the prepared composites were carried out using polarized optical microscopy and scanning electron microscopy. The electrical properties of composites were evaluated using an impedance analyzer in the frequency range 50Hz to 20MHz and temperature in the range 40-150 �C. Morphological studies infer that GO was homogeneously dispersed in the PSSA/PVA blend matrix. Investigations of electrical property indicate that the incorporation of GO into PSSA/PVA blend matrix resulted in the enhancement of the impedance (Z) and the quality factor (Q-factor) values. A maximum impedance of about 4.32�106? was observed at 50Hz and 90�C for PSSA/PVA/GO composites with 3wt.% GO loading. The Q-factor also increased from 8.37 for PSSA/PVA blend to 59.8 for PSSA/PVA/GO composites with 3wt.% GO loading. These results indicate that PSSA/PVA/GO composites can be used for high-Q capacitor applications. 2018 World Scientific Publishing Company.Scopu

    Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material

    No full text
    Novel flexible dielectric composites composed of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and graphene oxide (GO) with high dielectric constant and low dielectric loss have been developed using facile and eco-friendly colloidal processing technique. The structure and morphology of the PVA/PEG/GO composites were evaluated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The dielectric behavior of PVA/PEG/GO composites was investigated in the wide range of frequencies from 50 Hz to 20 MHz and temperature in the range 40 to 150 °C using impedance spectroscopy. The dielectric constant for PVA and PVA/PEG (50/50) blend film was found to be 10.71 (50 Hz, 150 °C) and 31.22 (50 Hz, 150 °C), respectively. The dielectric constant for PVA/PEG/GO composite with 3 wt% GO was found to be 644.39 (50 Hz, 150 °C) which is 60 times greater than the dielectric constant of PVA and 20 times greater than the dielectric constant of PVA/PEG (50/50) blend film. The PVA/PEG/GO composites not only show high dielectric constant but also show low dielectric loss which is highly attractive for practical applications. These findings underline the possibilities of using PVA/PEG/GO composites as a flexible dielectric material for high-performance energy storage applications such as embedded capacitors.Scopu

    Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics

    No full text
    In this work, Graphene Oxide (GO) reinforced novel polymer composites comprising of poly (4-styrenesulfonic acid) (PSSA) and polyvinyl alcohol (PVA) blend matrix have been developed using colloidal processing technique. The properties and the structure of prepared composites were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy (UV), Thermogravimetric analysis (TGA), Polarized optical microscopy (POM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The FTIR and Raman spectroscopy analysis indicate the strong interfacial interaction between GO and PSSA/PVA blend matrix. The XRD and SEM analysis confirm that GO was fully exfoliated into individual graphene sheets and dispersed homogeneously within the polymer matrix. The effective reinforcement of GO into PSSA/PVA blend matrix has resulted in the enhancement of dielectric constant. The dielectric constant has increased from 82.67 (50 Hz, 150 °C) for PSSA/PVA (50/50) blend to 297.91 (50 Hz, 150 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. The dielectric loss (tan δ) has increased from 1.56 (50 KHz, 140 °C) for PSSA/PVA (50/50) blend to 2.64 (50 KHz, 140 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. These findings provide a new insight to fabricate flexible, high-k dielectric composite as a promising material for energy storage applications.One of the authors, Kalim Deshmukh is grateful to the management of B.S. Abdur Rahman University , Chennai, TN, India for providing Junior Research Fellowship (JRF) to carry out this research work.Scopu
    corecore